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Abstract

Goal-conditioned hierarchical reinforcement learning (HRL) is a promising ap-
proach for scaling up reinforcement learning (RL) techniques. However, it often
suffers from training inefficiency as the action space of the high-level, i.e., the goal
space, is often large. Searching in a large goal space poses difficulties for both
high-level subgoal generation and low-level policy learning. In this paper, we show
that this problem can be effectively alleviated by restricting the high-level action
space from the whole goal space to a k-step adjacent region of the current state
using an adjacency constraint. We theoretically prove that the proposed adjacency
constraint preserves the optimal hierarchical policy in deterministic MDPs, and
show that this constraint can be practically implemented by training an adjacency
network that can discriminate between adjacent and non-adjacent subgoals. Experi-
mental results on discrete and continuous control tasks show that incorporating the
adjacency constraint improves the performance of state-of-the-art HRL approaches
in both deterministic and stochastic environments.1

1 Introduction

Hierarchical reinforcement learning (HRL) has shown great potentials in scaling up reinforcement
learning (RL) methods to tackle large, temporally extended problems with long-term credit assignment
and sparse rewards [39, 31, 2]. As one of the prevailing HRL paradigms, goal-conditioned HRL
framework [5, 37, 20, 42, 26, 22], which comprises a high-level policy that breaks the original task
into a series of subgoals and a low-level policy that aims to reach those subgoals, has recently achieved
significant success. However, the effectiveness of goal-conditioned HRL relies on the acquisition of
effective and semantically meaningful subgoals, which still remains a key challenge.

As the subgoals can be interpreted as high-level actions, it is feasible to directly train the high-level
policy to generate subgoals using external rewards as supervision, which has been widely adopted
in previous research [26, 25, 22, 20, 42]. Although these methods require little task-specific design,
they often suffer from training inefficiency. This is because the action space of the high-level, i.e., the
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Figure 1: High-level illustration of our
method: distant subgoals g1, g2, g3

(blue) can be surrogated by closer sub-
goals g̃1, g̃2, g̃3 (yellow) that fall into
the k-step adjacent regions.
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Figure 2: Comparison
between shortest tran-
sition distance dst and
Euclidean distance d
in a toy environment.
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Figure 3: The goal-conditioned
HRL framework and the k-step
adjacency constraint implement-
ed by the adjacency network ψφ
(dashed orange box).

goal space, is often as large as the state space. The high-level exploration in such a large action space
results in inefficient learning. As a consequence, the low-level training also suffers as the agent tries
to reach every possible subgoal produced by the high-level policy.

One effective way for handling large action spaces is action space reduction or action elimination.
However, it is difficult to perform action space reduction in general scenarios without additional
information, since a restricted action set may not be expressive enough to form the optimal policy.
There has been limited literature [44, 41, 19] studying action space reduction in RL, and to our
knowledge, there is no prior work studying action space reduction in HRL, since the information loss
in the goal space can lead to severe performance degradation [25].

In this paper, we present an optimality-preserving high-level action space reduction method for
goal-conditioned HRL. Concretely, we show that the high-level action space can be restricted from
the whole goal space to a k-step adjacent region centered at the current state. Our main intuition is
depicted in Figure 1: distant subgoals can be substituted by closer subgoals, as long as they drive
the low-level to move towards the same “direction”. Therefore, given the current state s and the
subgoal generation frequency k, the high-level only needs to explore in a subset of subgoals covering
states that the low-level can possibly reach within k steps. By reducing the action space of the
high-level, the learning efficiency of both the high-level and the low-level can be improved: for the
high-level, a considerably smaller action space relieves the burden of exploration and value function
approximation; for the low-level, adjacent subgoals provide a stronger learning signal as the agent
can be intrinsically rewarded with a higher frequency for reaching these subgoals. Formally, we
introduce a k-step adjacency constraint for high-level action space reduction, and theoretically prove
that the proposed constraint preserves the optimal hierarchical policy in deterministic MDPs. Also,
to practically implement the constraint, we propose to train an adjacency network so that the k-step
adjacency between all states and subgoals can be succinctly derived.

We benchmark our method on various tasks, including discrete control and planning tasks on grid
worlds and challenging continuous control tasks based on the MuJoCo simulator [40], which have
been widely used in HRL literature [26, 22, 25, 11]. Experimental results exhibit the superiority of
our method on both sample efficiency and asymptotic performance compared with the state-of-the-art
HRL approach HIRO [26], demonstrating the effectiveness of the proposed adjacency constraint.

2 Preliminaries

We consider a finite-horizon, goal-conditioned Markov Decision Process (MDP) defined as a tuple
〈S,G,A,P,R, γ〉, where S is a state set, G is a goal set, A is an action set, P : S ×A×S → R is a
state transition function, R : S × A → R is a reward function, and γ ∈ [0, 1) is a discount factor.
Following prior work [20, 42, 26], we consider a framework comprising two hierarchies: a high-level
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controller with policy πhθh(g|s) and a low-level controller with policy πlθl(a|s, g) parameterized
by two function approximators, e.g. neural networks with parameters θh and θl respectively, as
shown in Figure 3. The high-level controller aims to maximize the external reward and generates a
high-level action, i.e. a subgoal gt ∼ πhθh(g|st) ∈ G every k time steps when t ≡ 0 (mod k), where
k > 1 is a pre-determined hyper-parameter. It modulates the behavior of the low-level policy by
intrinsically rewarding the low-level for reaching these subgoals. The low-level aims to maximize the
intrinsic reward provided by the high-level, and performs a primary action at ∼ πlθl(a|st, gt) ∈ A
at every time step. Following prior methods [26, 1], we consider a goal space G which is a sub-
space of S with a known mapping function ϕ : S → G. When t 6≡ 0 (mod k), a pre-defined goal
transition process gt = h(gt−1, st−1, st) is utilized. We adopt directional subgoals that represent the
differences between desired states and current states [42, 26], where the goal transition function is set
to h(gt−1, st−1, st) = gt−1 + st−1 − st. The reward function of the high-level policy is defined as:

rhkt =

kt+k−1∑
i=kt

R(si, ai), t = 0, 1, 2, · · · , (1)

which is the accumulation of the external reward in the time interval [kt, kt+ k − 1].

While the high-level controller is motivated by the environmental reward, the low-level controller has
no direct access to this external reward. Instead, the low-level is supervised by the intrinsic reward
that describes subgoal-reaching performance, defined as rlt = −D (gt, ϕ(st+1)), where D is a binary
or continuous distance function. In practice, we employ Euclidean distance as D.

The goal-conditioned HRL framework above enables us to train high-level and low-level policies
concurrently in an end-to-end fashion. However, it often suffers from training inefficiency due to
the unconstrained subgoal generation process, as we have mentioned in Section 1. In the following
section, we will introduce the k-step adjacency constraint to mitigate this issue.

3 Theoretical Analysis

In this section, we provide our theoretical results and show that the optimality can be preserved when
learning a high-level policy with k-step adjacency constraint. We begin by introducing a distance
measure that can decide whether a state is “close” to another state. In this regard, common distance
functions such as the Euclidean distance are not suitable, as they often cannot reveal the real structure
of the MDP. Therefore, we introduce shortest transition distance, which equals to the minimum
number of steps required to reach a target state from a start state, as shown in Figure 2. In stochastic
MDPs, the number of steps required is not a fixed number, but a distribution conditioned on a specific
policy. In this case, we resort to the notion of first hit time [43] from stochastic processes, and define
the shortest transition distance by minimizing the expected first hit time over all possible policies.
Definition 1. Let s1, s2 ∈ S. Then, the shortest transition distance from s1 to s2 is defined as:

dst(s1, s2) := min
π∈Π

E[Ts1s2 |π] = min
π∈Π

∞∑
t=0

tP (Ts1s2 = t|π), (2)

where Π is the complete policy set and Ts1s2 denotes the first hit time from s1 to s2.

The shortest transition distance is determined by a policy that connects states s1 and s2 in the most
efficient way, which has also been studied by several prior work [10, 8]. This policy is optimal in the
sense that it requires the minimum number of steps to reach state s2 from state s1. Compared with
the dynamical distance [15], our definition here does not rely on a specific non-optimal policy. Also,
we do not assume that the environment is reversible, i.e. dst(s1, s2) = dst(s2, s1) does not hold for
all pairs of states. Therefore, the shortest transition distance is a quasi-metric as it does not satisfy the
symmetry condition. However, this limitation does not affect the following analysis as we only need
to consider the transition from the start state to the goal state without the reversed transition.

Given the definition of the shortest transition distance, we now formulate the property of an optimal
(deterministic) goal-conditioned policy π∗ : S × G → A [36]. We have:

π∗(s, g) ∈ arg min
a∈A

∑
s′∈S

P (s′|s, a) dst

(
s′, ϕ−1(g)

)
, ∀s ∈ S, g ∈ G, (3)
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where ϕ−1 : G → S is the known inverse mapping of ϕ. We then consider the goal-conditioned HRL
framework with high-level action frequency k. Different from a flat goal-conditioned policy, in this
setting the low-level policy is required to reach the subgoals with k limited steps. As a result, only a
subset of the original states can be reliably reached even with an optimal goal-conditioned policy.
We introduce the notion of k-step adjacent region to describe the set of subgoals mapped from this
reachable subset of states.
Definition 2. Let s ∈ S. Then, the k-step adjacent region of s is defined as:

GA(s, k) := {g ∈ G | dst

(
s, ϕ−1(g)

)
≤ k}. (4)

Harnessing the property of π∗, we can show that in deterministic MDPs, given an optimal low-level
policy πl∗ = π∗, subgoals that fall in the k-step adjacent region of the current state can represent all
optimal subgoals in the whole goal space in terms of the induced k-step low-level action sequence.
We summarize this finding in the following theorem.
Theorem 1. Let s ∈ S, g ∈ G and let π∗ be an optimal goal-conditioned policy. Under the
assumptions that the MDP is deterministic and that the MDP states are strongly connected, for all
k ∈ N+ satisfying k ≤ dst(s, ϕ

−1(g)), there exists a surrogate goal g̃ such that:
g̃ ∈ GA(s, k),

π∗(si, g̃) = π∗(si, g), ∀si ∈ τ (i 6= k),
(5)

where τ := (s0, s1, · · · , sk) is the k-step state trajectory starting from state s0 = s under π∗ and g.

Theorem 1 suggests that the k-step low-level action sequence generated by an optimal low-level
policy conditioned on a distant subgoal can be induced using a subgoal that is closer. Naturally, we
can generalize this result to a two-level goal-conditioned HRL framework, where the low-level is
actuated not by a single subgoal, but by a subgoal sequence produced by the high-level policy.
Theorem 2. Given the high-level action frequency k and the high-level planning horizon T , for
s ∈ S , let ρ∗ = (g0, gk, · · · , g(T−1)k) be the high-level subgoal trajectory starting from state s0 = s

under an optimal high-level policy πh∗. Also, let τ∗ = (s0, sk, s2k, · · · , sTk) be the high-level state
trajectory under ρ∗ and an optimal low-level policy πl∗. Then, there exists a surrogate subgoal
trajectory ρ̃∗ = (g̃0, g̃k, · · · , g̃(T−1)k) such that:

g̃kt ∈ GA(skt, k),

Q∗(skt, g̃kt) = Q∗(skt, gkt), t = 0, 1, · · · , T − 1,
(6)

where Q∗ is the optimal high-level Q-function under policy πh∗.

Theorem 1 and 2 show that we can constrain the high-level action space to state-wise k-step adjacent
regions without the loss of optimality. We formulate the high-level objective incorporating this k-step
adjacency constraint as:

max
θh

Eπhθh

T−1∑
t=0

γtrhkt

subject to dst

(
skt, ϕ

−1(gkt)
)
≤ k, t = 0, 1, · · · , T − 1

, (7)

where rhkt is the high-level reward defined by Equation (1) and gkt ∼ πhθh(g|skt).

In practice, Equation (7) is hard to optimize due to the strict constraint. Therefore, we employ
relaxation methods and derive the following un-constrained optimizing objective:

max
θh

Eπhθh

T−1∑
t=0

[
γtrhkt − η ·H

(
dst

(
skt, ϕ

−1(gkt)
)
, k
)]
, (8)

where H(x, k) = max(x/k − 1, 0) is a hinge loss function and η is a balancing coefficient.

One limitation of our theoretical results is that the theorems are derived in the context of deterministic
MDPs. However, these theorems are instructive for practical algorithm design in general cases, and
the deterministic assumption has also been exploited by some prior works that investigate distance
metrics in MDPs [15, 3]. Also, we note that many real-world applications can be approximated as
environments with deterministic dynamics where the stochasticity is mainly induced by noise. Hence,
we may infer that the adjacency constraint could preserve a near-optimal policy when the magnitude
of noise is small. Empirically, we show that our method is robust to certain types of stochasticity (see
Section 5 for details), and we leave rigorous theoretical analysis for future work.
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4 HRL with Adjacency Constraint

Although we have formulated the adjacency constraint in Section 3, the exact calculation of the
shortest transition distance dst(s1, s2) between two arbitrary states s1, s2 ∈ S remains complex
and non-differentiable. In this section, we introduce a simple method to collect and aggregate the
adjacency information from the environment interactions. We then train an adjacency network using
the aggregated adjacency information to approximate the shortest transition distance dst(s1, s2) in a
parameterized form, which enables a practical optimization of Equation (8).

4.1 Parameterized Approximation of Shortest Transition Distances

As shown in prior research [30, 10, 8, 15], accurately computing the shortest transition distance
is not easy and often has the same complexity as learning an optimal low-level goal-conditioned
policy. However, from the perspective of goal-conditioned HRL, we do not need a perfect shortest
transition distance measure or a low-level policy that can reach any distant subgoals. Instead, only
a discriminator of k-step adjacency is needed, and it is enough to learn a low-level policy that can
reliably reach nearby subgoals (more accurately, subgoals that fall into the k-step adjacent region of
the current state) rather than all potential subgoals in the goal space.

Given the above, here we introduce a simple approach to determine whether a subgoal satisfies the
k-step adjacency constraint. We first note that Equation (2) can be approximated as follows:

dst(s1, s2) ≈ min
π∈{π1,π2,··· ,πn}

∞∑
t=0

tP (Ts1s2 = t|π), (9)

Adjacency Space

Environment

-circle

Figure 4: The functionality
of the adjacency network.
The k-step adjacent region
is mapped to an εk-circle in
the adjacency space, where
egi = ψθ(gi), i = 1, 2, 3.

where {π1, π2, · · · , πn} is a finite policy set containing n different
deterministic policies. Obviously, if these policies are diverse enough,
we can effectively approximate the shortest transition distance with a
sufficiently large n. However, training a set of diverse policies sepa-
rately is costly, and using one single policy to approximate the policy
set (n = 1) [34, 35] often leads to non-optimality. To handle this dif-
ficulty, we exploit the fact that the low-level policy itself changes over
time during the training procedure. We can thus build a policy set by
sampling policies that emerge in different training stages. To aggregate
the adjacency information gathered by multiple policies, we propose to
explicitly memorize the adjacency information by constructing a binary
k-step adjacency matrix of the explored states. The adjacency matrix
has the same size as the number of explored states, and each element
represents whether two states are k-step adjacent. In practice, we use
the agent’s trajectories, where the temporal distances between states can
indicate their adjacency, to construct and update the adjacency matrix
online. More details are in the supplementary material.

In practice, using an adjacency matrix is not enough as this procedure is
non-differentiable and cannot generalize to newly-visited states. To this
end, we further distill the adjacency information stored in a constructed
adjacency matrix into an adjacency network ψφ parameterized by φ.
The adjacency network learns a mapping from the goal space to an adjacency space, where the
Euclidean distance between the state and the goal is consistent with their shortest transition distance:

d̃st(s1, s2|φ) :=
k

εk
‖ψφ(g1)− ψφ(g2)‖2 ≈ dst(s1, s2), (10)

where g1 = ϕ(s1), g2 = ϕ(s2) and εk is a scaling factor. As we have mentioned above, it is
hard to regress the Euclidean distance in the adjacency space to the shortest transition distance
accurately, and we only need to ensure a binary relation for implementing the adjacency constraint,
i.e., ‖ψφ(g1)−ψφ(g2)‖2 > εk for dst(s1, s2) > k, and ‖ψφ(g1)−ψφ(g2)‖2 < εk for dst(s1, s2) < k,
as shown in Figure 4. Inspired by modern metric learning approaches [14], we adopt a contrastive-like
loss function for this distillation process:

Ldis(φ) = Esi,sj∈S [ l ·max (‖ψφ(gi)− ψφ(gj)‖2 − εk, 0)

+ (1− l) ·max (εk + δ − ‖ψφ(gi)− ψφ(gj)‖2, 0)] ,
(11)
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Figure 5: Environments used in our experiments. (a) Key-Chest. The agent (A) starts from a random
position and needs to pick up the key (K) first, then uses the key to open the chest (C). (b) Maze.
The agent (A) starts from a fixed position and needs to reach the final goal (G) with dense rewards.
(c) Ant Gather. The ant robot starts from a fixed position and needs to collect apples (green) and
avoid bombs (red) (figure is adapted from Duan et al. [6]). (d) Ant Maze. The ant robot starts from a
fixed position and needs to reach a target position in a maze with dense rewards. (e) Ant Maze Sparse.
The ant robot starts from a random position and needs to reach a target position in a maze with sparse
rewards.

where gi = ϕ(si), gj = ϕ(sj), and a hyper-parameter δ > 0 is used to create a gap between the
embeddings. l ∈ {0, 1} represents the label indicating k-step adjacency derived from the k-step
adjacency matrix. Equation (11) penalizes adjacent state embeddings (l = 1) with large Euclidean
distances in the adjacency space and non-adjacent state embeddings (l = 0) with small Euclidean
distances. In practice, we use states evenly-sampled from the adjacency matrix to approximate the
expectation, and train the adjacency network each time after the adjacency matrix is updated with
newly-sampled trajectories.

Although the construction of an adjacency matrix limits our method to tasks with tabular state spaces,
our method can also handle continuous state spaces using goal space discretization (see our continuous
control experiments in Section 5). For applications with vast state spaces, constructing a complete
adjacency matrix will be problematic, but it is still possible to scale our method to these scenarios
using specific feature construction or dimension reduction methods [28, 29, 7], or substituting the
distance learning procedure with more accurate distance learning algorithms [10, 8] at the cost of
some learning efficiency. We consider possible extensions in this direction as our future work.

4.2 Combining HRL and Adjacency Constraint

With a learned adjacency network ψφ, we can now incorporate the adjacency constraint into the
goal-conditioned HRL framework. According to Equation (8), we introduce an adjacency loss Ladj

to replace the original strict adjacency constraint and minimize the following high-level objective:

Lhigh(θh) = −Eπhθh

T−1∑
t=0

(
γtrhkt − η · Ladj

)
, (12)

where η is the balancing coefficient, and Ladj is derived by replacing dst with d̃st defined by
Equation (10) in the second term of Equation (8):

Ladj(θh) = H
(
d̃st

(
skt, ϕ

−1(gkt)|φ
)
, k
)
∝ max (‖ψφ(ϕ(skt))− ψφ(gkt)‖2 − εk, 0) , (13)

where gkt ∼ πhθh(g|skt). Equation (13) will output a non-zero value when the generated subgoal
and the current state have an Euclidean distance larger than εk in the adjacency space, indicating
non-adjacency. It is thus consistent with the k-step adjacency constraint. In practice, we plug Ladj as
an extra loss term into the original policy loss term of a specific high-level RL algorithm, e.g., TD
error for temporal-difference learning methods.

5 Experimental Evaluation

We have presented our method of Hierarchical Reinforcement learning with k-step Adjacency
Constraint (HRAC). Our experiments are designed to answer the following questions: (1) Can HRAC
promote the generation of adjacent subgoals? (2) Can HRAC improve the sample efficiency and
overall performance of goal-conditioned HRL? (3) Can HRAC outperform other strategies that may
also improve the learning efficiency of hierarchical agents, e.g., hindsight experience replay [1]?
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Figure 6: Learning curves of HRAC and baselines on all tasks. Each curve and its shaded region rep-
resent mean episode reward and standard error of the mean respectively, averaged over 5 independent
trials. All curves have been smoothed equally for visual clarity.
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Figure 7: Learning curves in the ablation study, aver-
aged over 5 independent trials.
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Figure 8: Learning curves with different bal-
ancing coefficients.

5.1 Environment Setup

We employed two types of tasks with discrete and continuous state and action spaces to evaluate
the effectiveness of our method, as shown in Figure 5. Discrete tasks include Key-Chest and Maze,
where the agents are spawned in grid worlds with injected stochasticity and need to accomplish
tasks that require both low-level control and high-level planning. Continuous tasks include Ant
Gather, Ant Maze and Ant Maze Sparse, where the first two tasks are widely-used benchmarks in
HRL community [6, 11, 26, 25, 22], and the third task is a more challenging navigation task with
sparse rewards. In all tasks, we used a pre-defined 2-dimensional goal space that represents the (x, y)
position of the agent. More details of the environments are in the supplementary material.

5.2 Comparative Experiments

To comprehensively evaluate the performance of HRAC with different HRL implementations, we
employed two different HRL instances for different tasks. On discrete tasks, we used off-policy
TD3 [13] for high-level training and on-policy A2C, the syncrhonous version of A3C [24], for the
low-level. On continuous tasks, we used TD3 for both the high-level and the low-level training,
following prior work [26], and discretized the goal space to 1× 1 grids for adjacency learning.

We compared HRAC with the following baselines. (1) HIRO [26]: one of the state-of-the-art goal-
conditioned HRL approaches. (2) HIRO-B: a baseline analagous to HIRO, using binary intrinsic
reward for subgoal reaching instead of the shaped reward used by HIRO. (3) HRL-HER: a baseline that
employs hindsight experience replay (HER) [1] to produce alternative successful subgoal-reaching
experiences as complementary low-level learning signals [22]. (4) Vanilla: Kulkarni et al. [20] used
absolute subgoals instead of directional subgoals and adopted a binary intrinsic reward setting. More
details of the baselines are in the supplementary material.

The learning curves of HRAC and baselines across all tasks are plotted in Figure 6. In the Maze task
with dense rewards, HRAC achieves comparable performance with HIRO and outperforms other
baselines, while in other tasks HRAC consistently surpasses all baselines both in sample efficiency
and asymptotic performance. We note that the performance of the baseline HRL-HER matches
the results in the previous study [26] where introducing hindsight techniques often degrades the
performance of HRL, potentially due to the additional burden introduced on low-level training.
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(K), chest (C) and subgoal (g) at four different time steps are plotted. The adjacency heatmap is based
on the fourth time step, where colder colors represent smaller shortest transition distances.
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Figure 10: Learning curves in stochastic environments, averaged over 5 independent trials.

5.3 Ablation Study and Visualizations

We also compared HRAC with several variants to investigate the effectiveness of each component.
(1) HRAC-O: An oracle variant that uses a perfect adjacency matrix directly obtained from the
environment. We note that compared to other methods, this variant uses the additional information
that is not available in many applications. (2) NoAdj: A variant that uses an adjacency training
method analagous to the work by Savinov et al. [34, 35], where no adjacency matrix is maintained.
The adjacency network is trained using state-pairs directly sampled from stored trajectories, under
the same training budget as HRAC. (3) NegReward: This variant implements the k-step adjacency
constraint by penalizing the high-level with a negative reward when it generates non-adjacent subgoals,
which is used by HAC [22].

We provide learning curves of HRAC and these variants in Figure 7. In all tasks, HRAC yields similar
performance with the oracle variant HRAC-O while surpassing the NoAdj variant by a large margin,
exhibiting the effectiveness of our adjacency learning method. Meanwhile, HRAC achieves better
performance than the NegReward variant, suggesting the superiority of implementing the adjacency
constraint using a differentiable adjacency loss, which provides a stronger supervision than a penalty.
We also empirically studied the effect of different balancing coefficients η. Results are shown in
Figure 8, which suggests that generally a large η can lead to better and more stable performance.

Finally, we visualize the subgoals generated by the high-level policy and the adjacency heatmap
in Figure 9. Visualizations indicate that the agent does learn to generate adjacent and interpretable
subgoals. We provide additional visualizations in the supplementary material.

5.4 Empirical Study in Stochastic Environments

To empirically verify the stochasticity robustness of HRAC, we applied it to a set of stochastic tasks,
including stochastic Ant Gather, Ant Maze and Ant Maze Sparse tasks, which are modified from
the original ant tasks respectively. Concretely, we added Gaussian noise with different standard
deviations σ to the (x, y) position of the ant robot at every step, including σ = 0.01, σ = 0.05 and
σ = 0.1, representing increasing environmental stochasticity. In these tasks we compare HRAC with
the baseline HIRO, which has exhibited generally better performance than other baselines, in the
most noisy scenario when σ = 0.1. As displayed in Figure 10, HRAC achieves similar asymptotic
performances with different noise magnitudes in stochastic Ant Gather and Ant Maze tasks and
consistently outperforms HIRO, exhibiting robustness to stochastic environments.
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6 Related Work

Effectively learning policies with multiple hierarchies has been a long-standing problem in RL. Goal-
conditioned HRL [5, 37, 20, 42, 26, 22] aims to resolve this problem with a framework that separates
high-level planning and low-level control using subgoals. Recent advances in goal-conditioned HRL
mainly focus on improving the learning efficiency of this framework. Nachum et al. [26, 25] proposed
an off-policy correction technique to stabilize training, and addressed the problem of goal space
representation learning using a mutual-information-based objective. However, the subgoal generation
process in their approaches is unconstrained and supervised only by the external reward, and thus
these methods may still suffer from training inefficiency. Levy et al. [22] used hindsight techniques [1]
to train multi-level policies in parallel and also penalized the high-level for generating subgoals that
the low-level failed to reach. However, their method has no theoretical guarantee, and they directly
obtain the reachability measure from the environment, using the environmental information that is
not available in many scenarios. There is also prior work focusing on unsupervised acquisition of
subgoals based on potentially pivotal states [23, 18, 21, 34, 32, 17]. However, these subgoals are not
guaranteed to be well-aligned with the downstream tasks and thus are often sub-optimal.

Several prior works have constructed an environmental graph for high-level planning used search
nearby graph nodes as reachable subgoals for the low-level [34, 8, 17, 45]. However, these approaches
hard-coded the high-level planning process based on domain-specific knowledge, e.g., treat the
planning process as solving a shortest-path problem in the graph instead of a learning problem,
and thus are limited in scalability. Nasiriany et al. [29] used goal-conditioned value functions to
measure the feasibility of subgoals, but a pre-trained goal-conditioned policy is required. A more
general topic of goal generation in RL has also been studied in the literature [12, 28, 33]. However,
these methods only have a flat architecture and therefore cannot successfully solve tasks that require
complex high-level planning.

Meanwhile, our method relates to previous research that studied transition distance or reachability [30,
34, 35, 10, 15]. Most of these works learn the transition distance based on RL [30, 10, 15], which
tend to have a high learning cost. Savinov et al. [34, 35] proposed a supervised learning approach
for reachability learning. However, the metric they learned depends on a certain policy used for
interaction and thus could be sub-optimal compared to our learning method. There are also other
metrics that can reflect state similarities in MDPs, such as successor represention [4, 21] that depends
on both the environmental dynamics and a specific policy, and bisimulation metrics [9, 3] that depend
on both the dynamics and the rewards. Compared to these metrics, the shortest transition distance
depends only on the dynamics and therefore may be seamlessly applied to multi-task settings.

7 Conclusion

We present a novel k-step adjacency constraint for goal-conditioned HRL framework to mitigate
the issue of training inefficiency, with the theoretical guarantee of preserving the optimal policy in
deterministic MDPs. We show that the proposed adjacency constraint can be practically implemented
with an adjacency network. Experiments on several testbeds with discrete and continuous state and
action spaces demonstrate the effectiveness and robustness of our method.

As one of the most promising directions for scaling up RL, goal-conditioned HRL provides an
appealing paradigm for handling large-scale problems. However, some key issues involving how
to devise effective and interpretable hierarchies remain to be solved. For instance, the hierarchical
structure may endow the high-level policy with the ability to learn and explore in a more semantically
meaningful space [27], and the subgoals may be shared and reused in multi-task settings. Other
future work may include extending our method to tasks with high-dimensional state spaces, e.g.,
by encompassing modern representation learning schemes [16, 25, 38], and leveraging the learned
adjacency network to improve learning efficiency in more general scenarios.

Broader Impact

This work may promote the research in the field of HRL and RL, and has potential real-world
applications such as robotics. The main uncertainty of the proposed method might be the fact that
the RL training process itself is somewhat brittle, and may break in counterintuitive ways when the
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reward function is misspecified. Also, since the training data of RL heavily depends on the training
environments, designing unbiased simulators or real-world training environments is important for
eliminating the biases in the data collected by the agents.
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