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Abstract

In standard Convolutional Neural Networks (CNNs), the

receptive fields of artificial neurons in each layer are de-

signed to share the same size. It is well-known in the neu-

roscience community that the receptive field size of visual

cortical neurons are modulated by the stimulus, which has

been rarely considered in constructing CNNs. We propose

a dynamic selection mechanism in CNNs that allows each

neuron to adaptively adjust its receptive field size based

on multiple scales of input information. A building block

called Selective Kernel (SK) unit is designed, in which mul-

tiple branches with different kernel sizes are fused using

softmax attention that is guided by the information in these

branches. Different attentions on these branches yield dif-

ferent sizes of the effective receptive fields of neurons in

the fusion layer. Multiple SK units are stacked to a deep

network termed Selective Kernel Networks (SKNets). On

the ImageNet and CIFAR benchmarks, we empirically show

that SKNet outperforms the existing state-of-the-art archi-

tectures with lower model complexity. Detailed analyses

show that the neurons in SKNet can capture target objects

with different scales, which verifies the capability of neu-

rons for adaptively adjusting their receptive field sizes ac-

cording to the input. The code and models are available at

https://github.com/implus/SKNet.
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1. Introduction

The local receptive fields (RFs) of neurons in the primary

visual cortex (V1) of cats [14] have inspired the construc-

tion of Convolutional Neural Networks (CNNs) [26] in the

last century, and it continues to inspire mordern CNN struc-

ture construction. For instance, it is well-known that in the

visual cortex, the RF sizes of neurons in the same area (e.g.,

V1 region) are different, which enables the neurons to col-

lect multi-scale spatial information in the same processing

stage. This mechanism has been widely adopted in recent

Convolutional Neural Networks (CNNs). A typical exam-

ple is InceptionNets [42, 15, 43, 41], in which a simple con-

catenation is designed to aggregate multi-scale information

from, e.g., 3×3, 5×5, 7×7 convolutional kernels inside the

“inception” building block.

However, some other RF properties of cortical neurons

have not been emphasized in designing CNNs, and one such

property is the adaptive changing of RF size. Numerous ex-

perimental evidences have suggested that the RF sizes of

neurons in the visual cortex are not fixed, but modulated by

the stimulus. The Classical RFs (CRFs) of neurons in the

V1 region was discovered by Hubel and Wiesel [14], as de-

termined by single oriented bars. Later, many studies (e.g.,

[30]) found that the stimuli outside the CRF will also af-

fect the responses of neurons. The neurons are said to have

non-classical RFs (nCRFs). In addition, the size of nCRF

is related to the contrast of the stimulus: the smaller the

contrast, the larger the effective nCRF size [37]. Surpris-

ingly, by stimulating nCRF for a period of time, the CRF

of the neuron is also enlarged after removing these stim-

uli [33]. All of these experiments suggest that the RF sizes

of neurons are not fixed but modulated by stimulus [38].

Unfortunately, this property does not receive much atten-

tion in constructing deep learning models. Those models

with multi-scale information in the same layer such as In-

ceptionNets have an inherent mechanism to adjust the RF

size of neurons in the next convolutional layer according

to the contents of the input, because the next convolutional
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layer linearly aggregates multi-scale information from dif-

ferent branches. But that linear aggregation approach may

be insufficient to provide neurons powerful adaptation abil-

ity.

In the paper, we present a nonlinear approach to aggre-

gate information from multiple kernels to realize the adap-

tive RF sizes of neurons. We introduce a “Selective Kernel”

(SK) convolution, which consists of a triplet of operators:

Split, Fuse and Select. The Split operator generates mul-

tiple paths with various kernel sizes which correspond to

different RF sizes of neurons. The Fuse operator combines

and aggregates the information from multiple paths to ob-

tain a global and comprehensive representation for selection

weights. The Select operator aggregates the feature maps of

differently sized kernels according to the selection weights.

The SK convolutions can be computationally lightweight

and impose only a slight increase in parameter and compu-

tational cost. We show that on the ImageNet 2012 dataset

[35] SKNets are superior to the previous state-of-the-art

models with similar model complexity. Based on SKNet-

50, we find the best settings for SK convolution and show

the contribution of each component. To demonstrate their

general applicability, we also provide compelling results on

smaller datasets, CIFAR-10 and 100 [22], and successfully

embed SK into small models (e.g., ShuffleNetV2 [27]).

To verify the proposed model does have the ability to

adjust neurons’ RF sizes, we simulate the stimulus by en-

larging the target object in natural images and shrinking the

background to keep the image size unchanged. It is found

that most neurons collect information more and more from

the larger kernel path when the target object becomes larger

and larger. These results suggest that the neurons in the pro-

posed SKNet have adaptive RF sizes, which may underlie

the model’s superior performance in object recognition.

2. Related Work

Multi-branch convolutional networks. Highway net-

works [39] introduces the bypassing paths along with gat-

ing units. The two-branch architecture eases the difficulty

to training networks with hundreds of layers. The idea

is also used in ResNet [9, 10], but the bypassing path

is the pure identity mapping. Besides the identity map-

ping, the shake-shake networks [7] and multi-residual net-

works [1] extend the major transformation with more iden-

tical paths. The deep neural decision forests [21] form the

tree-structural multi-branch principle with learned splitting

functions. FractalNets [25] and Multilevel ResNets [52]

are designed in such a way that the multiple paths can

be expanded fractally and recursively. The InceptionNets

[42, 15, 43, 41] carefully configure each branch with cus-

tomized kernel filters, in order to aggregate more informa-

tive and multifarious features. Please note that the proposed

SKNets follow the idea of InceptionNets with various filters

for multiple branches, but differ in at least two important

aspects: 1) the schemes of SKNets are much simpler with-

out heavy customized design and 2) an adaptive selection

mechanism for these multiple branches is utilized to realize

adaptive RF sizes of neurons.

Grouped/depthwise/dilated convolutions. Grouped con-

volutions are becoming popular due to their low compu-

tational cost. Denote the group size by G, then both the

number of parameters and the computational cost will be

divided by G, compared to the ordinary convolution. They

are first adopted in AlexNet [23] with a purpose of distribut-

ing the model over more GPU resources. Surprisingly, us-

ing grouped convolutions, ResNeXts [47] can also improve

accuracy. This G is called “cardinality”, which characterize

the model together with depth and width.

Many compact models such as IGCV1 [53], IGCV2 [46]

and IGCV3 [40] are developed, based on the interleaved

grouped convolutions. A special case of grouped convolu-

tions is depthwise convolution, where the number of groups

is equal to the number of channels. Xception [3] and Mo-

bileNetV1 [11] introduce the depthwise separable convolu-

tion which decomposes ordinary convolutions into depth-

wise convolution and pointwise convolution. The effec-

tiveness of depthwise convolutions is validated in the sub-

sequent works such as MobileNetV2 [36] and ShuffleNet

[54, 27]. Beyond grouped/depthwise convolutions, dilated

convolutions [50, 51] support exponential expansion of the

RF without loss of coverage. For example, a 3×3 convo-

lution with dilation 2 can approximately cover the RF of

a 5×5 filter, whilst consuming less than half of the com-

putation and memory. In SK convolutions, the kernels of

larger sizes (e.g., >1) are designed to be integrated with the

grouped/depthwise/dilated convolutions, in order to avoid

the heavy overheads.

Attention mechanisms. Recently, the benefits of attention

mechanism have been shown across a range of tasks, from

neural machine translation [2] in natural language process-

ing to image captioning [49] in image understanding. It bi-

ases the allocation of the most informative feature expres-

sions [16, 17, 24, 28, 31] and simultaneously suppresses the

less useful ones. Attention has been widely used in recent

applications such as person re-ID [4], image recovery [55],

text abstraction [34] and lip reading [48]. To boost the per-

formance of image classification, Wang et al. [44] propose

a trunk-and-mask attention between intermediate stages of

a CNN. An hourglass module is introduced to achieve the

global emphasis across both spatial and channel dimension.

Furthermore, SENet [12] brings an effective, lightweight

gating mechanism to self-recalibrate the feature map via

channel-wise importances. Beyond channel, BAM [32] and

CBAM [45] introduce spatial attention in a similar way. In

contrast, our proposed SKNets are the first to explicitly fo-

cus on the adaptive RF size of neurons by introducing the
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Figure 1. Selective Kernel Convolution.

attention mechanisms.

Dynamic convolutions. Spatial Transform Networks [18]

learns a parametric transformation to warp the feature map,

which is considered difficult to be trained. Dynamic Fil-

ter [20] can only adaptively modify the parameters of fil-

ters, without the adjustment of kernel size. Active Convo-

lution [19] augments the sampling locations in the convolu-

tion with offsets. These offsets are learned end-to-end but

become static after training, while in SKNet the RF sizes

of neurons can adaptively change during inference. De-

formable Convolutional Networks [6] further make the lo-

cation offsets dynamic, but it does not aggregate multi-scale

information in the same way as SKNet does.

3. Methods

3.1. Selective Kernel Convolution

To enable the neurons to adaptively adjust their RF sizes,

we propose an automatic selection operation, “Selective

Kernel” (SK) convolution, among multiple kernels with dif-

ferent kernel sizes. Specifically, we implement the SK con-

volution via three operators – Split, Fuse and Select, as illus-

trated in Fig. 1, where a two-branch case is shown. There-

fore in this example, there are only two kernels with differ-

ent kernel sizes, but it is easy to extend to multiple branches

case.

Split: For any given feature map X ∈ R
H′

×W ′
×C′

, by

default we first conduct two transformations F̃ : X → Ũ ∈
R

H×W×C and F̂ : X → Û ∈ R
H×W×C with kernel sizes

3 and 5, respectively. Note that both F̃ and F̂ are com-

posed of efficient grouped/depthwise convolutions, Batch

Normalization [15] and ReLU [29] function in sequence.

For further efficiency, the conventional convolution with a

5×5 kernel is replaced with the dilated convolution with a

3×3 kernel and dilation size 2.

Fuse: As stated in Introduction, our goal is to enable

neurons to adaptively adjust their RF sizes according to the

stimulus content. The basic idea is to use gates to control

the information flows from multiple branches carrying dif-

ferent scales of information into neurons in the next layer.

To achieve this goal, the gates need to integrate information

from all branches. We first fuse results from multiple (two

in Fig. 1) branches via an element-wise summation:

U = Ũ+ Û, (1)

then we embed the global information by simply using

global average pooling to generate channel-wise statistics

as s ∈ R
C . Specifically, the c-th element of s is calculated

by shrinking U through spatial dimensions H ×W :

sc = Fgp(Uc) =
1

H ×W

H∑

i=1

W∑

j=1

Uc(i, j). (2)

Further, a compact feature z ∈ R
d×1 is created to enable

the guidance for the precise and adaptive selections. This

is achieved by a simple fully connected (fc) layer, with the

reduction of dimensionality for better efficiency:

z = Ffc(s) = δ(B(Ws)), (3)

where δ is the ReLU function [29], B denotes the Batch

Normalization [15], W ∈ R
d×C . To study the impact of d

on the efficiency of the model, we use a reduction ratio r to

control its value:

d = max(C/r, L), (4)

where L denotes the minimal value of d (L = 32 is a typical

setting in our experiments).

Select: A soft attention across channels is used to adap-

tively select different spatial scales of information, which is

guided by the compact feature descriptor z. Specifically, a

softmax operator is applied on the channel-wise digits:

ac =
eAcz

eAcz + eBcz
, bc =

eBcz

eAcz + eBcz
, (5)

where A,B ∈ R
C×d and a,b denote the soft attention vec-

tor for Ũ and Û, respectively. Note that Ac ∈ R
1×d is

the c-th row of A and ac is the c-th element of a, likewise
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Output ResNeXt-50 (32×4d) SENet-50 SKNet-50

112 × 112 7 × 7, 64, stride 2

56 × 56 3 × 3 max pool, stride 2

56 × 56





1 × 1, 128

3 × 3, 128, G = 32

1 × 1, 256



× 3









1 × 1, 128

3 × 3, 128, G = 32

1 × 1, 256

fc, [16, 256]









× 3





1 × 1, 128

SK[M = 2, G = 32, r = 16], 128

1 × 1, 256



× 3

28 × 28





1 × 1, 256

3 × 3, 256, G = 32

1 × 1, 512



× 4









1 × 1, 256

3 × 3, 256, G = 32

1 × 1, 512

fc, [32, 512]









× 4





1 × 1, 256

SK[M = 2, G = 32, r = 16], 256

1 × 1, 512



× 4

14 × 14





1 × 1, 512

3 × 3, 512, G = 32

1 × 1, 1024



× 6









1 × 1, 512

3 × 3, 512, G = 32

1 × 1, 1024

fc, [64, 1024]









× 6





1 × 1, 512

SK[M = 2, G = 32, r = 16], 512

1 × 1, 1024



× 6

7 × 7





1 × 1, 1024

3 × 3, 1024, G = 32

1 × 1, 2048



× 3









1 × 1, 1024

3 × 3, 1024, G = 32

1 × 1, 2048

fc, [128, 2048]









× 3





1 × 1, 1024

SK[M = 2, G = 32, r = 16], 1024

1 × 1, 2048



 × 3

1 × 1 7 × 7 global average pool, 1000-d fc, softmax

#P 25.0M 27.7M 27.5M

GFLOPs 4.24 4.25 4.47

Table 1. The three columns refer to ResNeXt-50 with a 32×4d template, SENet-50 based on the ResNeXt-50 backbone and the correspond-

ing SKNet-50, respectively. Inside the brackets are the general shape of a residual block, including filter sizes and feature dimensionalities.

The number of stacked blocks on each stage is presented outside the brackets. “G = 32” suggests the grouped convolution. The inner

brackets following by fc indicates the output dimension of the two fully connected layers in an SE module. #P denotes the number of

parameter and the definition of FLOPs follow [54], i.e., the number of multiply-adds.

Bc and bc. In the case of two branches, the matrix B is re-

dundant because ac + bc = 1. The final feature map V is

obtained through the attention weights on various kernels:

Vc = ac · Ũc + bc · Ûc, ac + bc = 1, (6)

where V = [V1,V2, ...,VC ], Vc ∈ R
H×W . Note that

here we provide a formula for the two-branch case and one

can easily deduce situations with more branches by extend-

ing Eqs. (1) (5) (6).

3.2. Network Architecture

Using the SK convolutions, the overall SKNet architec-

ture is listed in Table 1. We start from ResNeXt [47] for

two reasons: 1) it has low computational cost with extensive

use of grouped convolution, and 2) it is one of the state-of-

the-art network architectures with high performance on ob-

ject recognition. Similar to the ResNeXt [47], the proposed

SKNet is mainly composed of a stack of repeated bottle-

neck blocks, which are termed “SK units”. Each SK unit

consists of a sequence of 1×1 convolution, SK convolu-

tion and 1×1 convolution. In general, all the large kernel

convolutions in the original bottleneck blocks in ResNeXt

are replaced by the proposed SK convolutions, enabling the

network to choose appropriate RF sizes in an adaptive man-

ner. As the SK convolutions are very efficient in our design,

SKNet-50 only leads to 10% increase in the number of pa-

rameters and 5% increase in computational cost, compared

with ResNeXt-50.

In SK units, there are three important hyper-parameters

which determine the final settings of SK convolutions: the

number of paths M that determines the number of choices

of different kernels to be aggregated, the group number G
that controls the cardinality of each path, and the reduction

ratio r that controls the number of parameters in the fuse

operator (see Eq. (4)). In Table 1, we denote one typical

setting of SK convolutions SK[M,G, r] to be SK[2, 32, 16].

The choices and effects of these parameters are discussed in

Sec. 4.3.

Table 1 shows the structure of a 50-layer SKNet which

has four stages with {3,4,6,3} SK units, respectively. By

varying the number of SK units in each stage, one can ob-

tain different architectures. In this study, we have experi-

mented with other two architectures, SKNet-26, which has

{2,2,2,2} SK units, and SKNet-101, which has {3,4,23,3}
SK units, in their respective four stages.

Note that the proposed SK convolutions can be applied to

other lightweight networks, e.g., MobileNet [11, 36], Shuf-

fleNet [54, 27], in which 3×3 depthwise convolutions are

extensively used. By replacing these convolutions with the

SK convolutions, we can also achieve very appealing results

in the compact architectures (see Sec. 4.1).

4. Experiments

4.1. ImageNet Classification

The ImageNet 2012 dataset [35] comprises 1.28 mil-

lion training images and 50K validation images from 1,000

classes. We train networks on the training set and report the

top-1 errors on the validation set. For data augmentation,

we follow the standard practice and perform the random-
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top-1 err (%)
#P GFLOPs

224× 320×

ResNeXt-50 22.23 21.05 25.0M 4.24

AttentionNeXt-56 [44] 21.76 – 31.9M 6.32

InceptionV3 [43] – 21.20 27.1M 5.73

ResNeXt-50 + BAM [32] 21.70 20.15 25.4M 4.31

ResNeXt-50 + CBAM [45] 21.40 20.38 27.7M 4.25

SENet-50 [12] 21.12 19.71 27.7M 4.25

SKNet-50 (ours) 20.79 19.32 27.5M 4.47

ResNeXt-101 21.11 19.86 44.3M 7.99

Attention-92 [44] – 19.50 51.3M 10.43

DPN-92 [5] 20.70 19.30 37.7M 6.50

DPN-98 [5] 20.20 18.90 61.6M 11.70

InceptionV4 [41] – 20.00 42.0M 12.31

Inception-ResNetV2 [41] – 19.90 55.0M 13.22

ResNeXt-101 + BAM [32] 20.67 19.15 44.6M 8.05

ResNeXt-101 + CBAM [45] 20.60 19.42 49.2M 8.00

SENet-101 [12] 20.58 18.61 49.2M 8.00

SKNet-101 (ours) 20.19 18.40 48.9M 8.46

Table 2. Comparisons to the state-of-the-arts under roughly identi-

cal complexity. 224× denotes the single 224×224 crop for evalu-

ation, and likewise 320×. Note that SENets/SKNets are all based

on the corresponding ResNeXt backbones.

size cropping to 224 ×224 and random horizontal flipping

[42]. The practical mean channel subtraction is adpoted to

normalize the input images for both training and testing.

Label-smoothing regularization [43] is used during train-

ing. For training large models, we use synchronous SGD

with momentum 0.9, a mini-batch size of 256 and a weight

decay of 1e-4. The initial learning rate is set to 0.1 and de-

creased by a factor of 10 every 30 epochs. All models are

trained for 100 epochs from scratch on 8 GPUs, using the

weight initialization strategy in [8]. For training lightweight

models, we set the weight decay to 4e-5 instead of 1e-4,

and we also use slightly less aggressive scale augmentation

for data preprocessing. Similar modifications can as well

be referenced in [11, 54] since such small networks usually

suffer from underfitting rather than overfitting. To bench-

mark, we apply a centre crop on the validation set, where

224×224 or 320×320 pixels are cropped for evaluating the

classification accuracy. The results reported on ImageNet

are the averages of 3 runs by default.

Comparisons with state-of-the-art models. We first com-

pare SKNet-50 and SKNet-101 to the public competitive

models with similar model complexity. The results show

that SKNets consistently improve performance over the

state-of-the-art attention-based CNNs under similar bud-

gets. Remarkably, SKNet-50 outperforms ResNeXt-101

by above absolute 0.32%, although ResNeXt-101 is 60%

larger in parameter and 80% larger in computation. With

comparable or less complexity than InceptionNets, SKNets

achieve above absolute 1.5% gain of performance, which

top-1 err. (%) #P GFLOPs

ResNeXt-50 (32×4d) 22.23 25.0M 4.24

SKNet-50 (ours) 20.79 (1.44) 27.5M 4.47

ResNeXt-50, wider 22.13 (0.10) 28.1M 4.74

ResNeXt-56, deeper 22.04 (0.19) 27.3M 4.67

ResNeXt-50 (36×4d) 22.00 (0.23) 27.6M 4.70

Table 3. Comparisons on ImageNet validation set when the com-

putational cost of model with more depth/width/cardinality is in-

creased to match that of SKNet. The numbers in brackets denote

the gains of performance.

demonstrates the superiority of adaptive aggregation for

multiple kernels. We also note that using slightly less pa-

rameters, SKNets can obtain 0.3∼0.4% gains to SENet

counterparts in both 224×224 and 320×320 evaluations.

Selective Kernel vs. Depth/Width/Cardinality. Com-

pared with ResNeXt (using the setting of 32×4d), SKNets

inevitably introduce a slightly increase in parameter and

computation due to the additional paths of differnet kernels

and the selection process. For fair comparison, we increase

the complexity of ResNeXt by changing its depth, width

and cardinality, to match the complexity of SKNets. Table

3 shows that increased complexity does lead to better pre-

diction accuracy.

However, the improvement is marginal when going

deeper (0.19% from ResNeXt-50 to ResNeXt-53) or

wider (0.1% from ResNeXt-50 to ResNeXt-50 wider), or

with slightly more cardinality (0.23% from ResNeXt-50

(32×4d) to ResNeXt-50 (36×4d)).

In contrast, SKNet-50 obtains 1.44% absolute improve-

ment over the baseline ResNeXt-50, which indicates that

SK convolution is very efficient.

Performance with respect to the number of parameters.

We plot the top-1 error rate of the proposed SKNet with

respect to the number of parameters in it (Fig. 2). Three ar-

chitectures, SK-26, SKNet-50 and SKNet-101 (see Section

3.2 for details), are shown in the figure. For comparison,

we plot the results of some state-of-the-art models includ-

ing ResNets [9], ResNeXts [47], DenseNets [13], DPNs [5]

and SENets [12] in the figure. Each model has multiple

variants. The details of the compared architectures are pro-

vided in the Supplementary Materials. All Top-1 errors are

reported in the references. It is seen that SKNets utilizes pa-

rameters more efficiently than these models. For instance,

achieving ∼20.2 top-1 error, SKNet-101 needs 22% fewer

parameters than DPN-98.

Lightweight models. Finally, we choose the representa-

tive compact architecture – ShuffleNetV2 [27], which is one

of the strongest light models, to evaluate the generalization

ability of SK convolutions. By exploring different scales of

models in Table 4, we can observe that SK convolutions not

only boost the accuracy of baselines significantly but also
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Figure 2. Relationship between the performance of SKNet and the

number of parameters in it, compared with the state-of-the-arts.

ShuffleNetV2 top-1 err.(%) MFLOPs #P

0.5× [27] 39.70 41 1.4M

0.5× (our impl.) 38.41 40.39 1.40M

0.5× + SE [12] 36.34 40.85 1.56M

0.5× + SK 35.35 42.58 1.48M

1.0× [27] 30.60 146 2.3M

1.0× (our impl.) 30.57 140.35 2.45M

1.0× + SE [12] 29.47 141.73 2.66M

1.0× + SK 28.36 145.66 2.63M

Table 4. Single 224×224 crop top-1 error rates (%) by variants of

lightweight models on ImageNet validation set.

perform better than SE [12] (achieving around absolute 1%

gain). This indicates the great potential of the SK convolu-

tions in applications on low-end devices.

4.2. CIFAR Classification

To evaluate the performance of SKNets on smaller

datasets, we conduct more experiments on CIFAR-10 and

100 [22]. The two CIFAR datasets [22] consist of colored

natural scence images, with 32×32 pixel each. The train

and test sets contain 50k images and 10k images respec-

tively. CIFAR-10 has 10 classes and CIFAR-100 has 100.

We take the architectures as in [47] for reference: our net-

works have a single 3×3 convolutional layer, followed by 3

stages each having 3 residual blocks with SK convolution.

We also apply SE blocks on the same backbone (ResNeXt-

29, 16×32d) for better comparisons. More architectural and

training details are provided in the supplemantary materi-

als. Notably, SKNet-29 achieves better or comparable per-

formance than ResNeXt-29, 16×64d with 60% fewer pa-

rameters and it consistently outperforms SENet-29 on both

CIFAR-10 and 100 with 22% fewer parameters.

4.3. Ablation Studies

In this section, we report ablation studies on the Ima-

geNet dataset to investigate the effectiveness of SKNet.

Models #P CIFAR-10 CIFAR-100

ResNeXt-29, 16×32d 25.2M 3.87 18.56

ResNeXt-29, 8×64d 34.4M 3.65 17.77

ResNeXt-29, 16×64d 68.1M 3.58 17.31

SENet-29 [12] 35.0M 3.68 17.78

SKNet-29 (ours) 27.7M 3.47 17.33

Table 5. Top-1 errors (%, average of 10 runs) on CIFAR. SENet-29

and SKNet-29 are all based on ResNeXt-29, 16×32d.

Settings top-1

err. (%)
#P GFLOPs

Resulted

KernelKernel D G

3×3 3 32 20.97 27.5M 4.47 7×7

3×3 2 32 20.79 27.5M 4.47 5×5

3×3 1 32 20.91 27.5M 4.47 3×3

5×5 1 64 20.80 28.1M 4.56 5×5

7×7 1 128 21.18 28.1M 4.55 7×7

Table 6. Results of SKNet-50 with different settings in the second

branch, while the setting of the first kernel is fixed. “Resulted

kernel” in the last column means the approximate kernel size with

dilated convolution.

K3 K5 K7 SK
top-1

err. (%)
#P GFLOPs

X 22.23 25.0M 4.24

X 25.14 25.0M 4.24

X 25.51 25.0M 4.24

X X 21.76 26.5M 4.46

X X X 20.79 27.5M 4.47

X X 21.82 26.5M 4.46

X X X 20.97 27.5M 4.47

X X 23.64 26.5M 4.46

X X X 23.09 27.5M 4.47

X X X 21.47 28.0M 4.69

X X X X 20.76 29.3M 4.70

Table 7. Results of SKNet-50 with different combinations of mul-

tiple kernels. Single 224×224 crop is utilized for evaluation.

The dilation D and group number G. The dilation D and

group number G are two crucial elements to control the RF

size. To study their effects, we start from the two-branch

case and fix the setting 3×3 filter with dilation D = 1 and

group G = 32 in the first kernel branch of SKNet-50.

Under the constraint of similar overall complexity, there

are two ways to enlarge the RF of the second kernel branch:

1) increase the dilation D whilst fixing the group number G,

and 2) simultaneously increase the filter size and the group

number G.

Table 6 shows that the optimal settings for the other

branch are those with kernel size 5×5 (the last column),

which is larger than the first fixed kernel with size 3×3. It

is proved beneficial to use different kernel sizes, and we

attribute the reason to the aggregation of multi-scale infor-

mation.

There are two optimal configurations: kernel size 5×5
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with D = 1 and kernel size 3×3 with D = 2, where the

latter has slightly lower model complexity. In general, we

empirically find that the series of 3×3 kernels with various

dilations is moderately superior to the corresponding coun-

terparts with the same RF (large kernels without dilations)

in both performance and complexity.

Combination of different kernels. Next we investigate the

effect of combination of different kernels. Some kernels

may have size larger than 3×3, and there may be more than

two kernels. To limit the search space, we only use three

different kernels, called “K3” (standard 3×3 convolutional

kernel), “K5” (3×3 convolution with dilation 2 to approx-

imate 5×5 kernel size), and “K7” (3×3 with dilation 3 to

approximate 7×7 kernel size). Note that we only consider

the dilated versions of large kernels (5×5 and 7×7) as Ta-

ble 6 has suggested. G is fixed to 32. If “SK” in Table 7

is ticked, it means that we use the SK attention across the

corresponding kernels ticked in the same row (the output of

each SK unit is V in Fig. 1), otherwise we simply sum up

the results with these kernels (then the output of each SK

unit is U in Fig. 1) as a naive baseline model.

The results in Table 7 indicate that excellent performance

of SKNets can be attributed to the use of multiple kernels

and the adaptive selection mechanism among them. From

Table 7, we have the following observations: (1) When the

number of paths M increases, in general the recognition

error decreases. The top-1 errors in the first block of the

table (M = 1) are generally higher than those in the sec-

ond block (M = 2), and the errors in the second block are

generally higher than the third block (M = 3). (2) No mat-

ter M = 2 or 3, SK attention-based aggregation of multi-

ple paths always achieves lower top-1 error than the simple

aggregation method (naive baseline model). (3) Using SK

attention, the performance gain of the model from M = 2 to

M = 3 is marginal (the top-1 error decreases from 20.79%

to 20.76%). For better trade-off between performance and

efficiency, M = 2 is preferred.

4.4. Analysis and Interpretation

To understand how adaptive kernel selection works, we

analyze the attention weights by inputting same target ob-

ject but in different scales. We take all the image instances

from the ImageNet validation set, and progressively enlarge

the central object from 1.0× to 2.0× via a central cropping

and subsequent resizing (see top left in Fig. 3a,b).

First, we calculate the attention values for the large ker-

nel (5×5) in each channel in each SK unit. Fig. 3a,b (bot-

tom left) show the attention values in all channels for two

randomly samples in SK 3 4, and Fig. 3c (bottom left)

shows the averaged attention values in all channels across

all validation images. It is seen that in most channels, when

the target object enlarges, the attention weight for the large

kernel (5×5) increases, which suggests that the RF sizes of
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Figure 3. (a) and (b): Attention results for two randomly sampled

images with three differently sized targets (1.0x, 1.5x and 2.0x).

Top left: sample images. Bottom left: the attention values for the

5×5 kernel across channels in SK 3 4. The plotted results are the

averages of 16 successive channels for the ease of view. Right: the

attention value of the kernel 5×5 minus that of the kernel 3×3 in

different SK units. (c): Average results over all image instances in

the ImageNet validation set. Standard deviation is also plotted.

the neurons are adaptively getting larger, which agrees with

our expectation.

We then calculate the difference between the the mean

attention weights associated with the two kernels (larger mi-

nus smaller) over all channels in each SK unit. Fig. 3a,b

(right) show the results for two random samples at different

SK units, and Fig. 3c (right) show the results averaged over

all validation images. We find one surprising pattern about

the role of adaptive selection across depth: The larger the

target object is, the more attention will be assigned to larger
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Figure 4. Average mean attention difference (mean attention value of kernel 5×5 minus that of kernel 3×3) on SK units of SKNet-50, for

each of 1,000 categories using all validation samples on ImageNet. On low or middle level SK units (e.g., SK 2 3, SK 3 4), 5×5 kernels

are clearly imposed with more emphasis if the target object becomes larger (1.0x → 1.5x).

kernels by the Selective Kernel mechanism in low and mid-

dle level stages (e.g., SK 2 3, SK 3 4). However, at much

higher layers (e.g., SK 5 3), all scale information is getting

lost and such a pattern disappears.

Further, we look deep into the selection distributions

from the perspective of classes. For each category, we draw

the average mean attention differences on the representative

SK units for 1.0× and 1.5× objects over all the 50 images

which belong to that category. We present the statistics of

1,000 classes in Fig. 4. We observe the previous pattern

holds true for all 1,000 categories, as illustrated in Fig. 4,

where the importance of kernel 5×5 consistently and simul-

taneously increases when the scale of targets grows. This

suggests that in the early parts of networks, the appropri-

ate kernel sizes can be selected according to the semantic

awareness of objects’ sizes, thus it efficiently adjusts the

RF sizes of these neurons. However, such pattern is not

existed in the very high layers like SK 5 3, since for the

high-level representation, “scale” is partially encoded in the

feature vector, and the kernel size matters less compared to

the situation in lower layers.

5. Conclusion

Inspired by the adaptive receptive field (RF) sizes of neu-

rons in visual cortex, we propose Selective Kernel Networks

(SKNets) with a novel Selective Kernel (SK) convolution,

to improve the efficiency and effectiveness of object recog-

nition by adaptive kernel selection in a soft-attention man-

ner. SKNets demonstrate state-of-the-art performances on

various benchmarks, and from large models to tiny models.

In addition, we also discover several meaningful behaviors

of kernel selection across channel, depth and category, and

empirically validate the effective adaption of RF sizes for

SKNets, which leads to a better understanding of its mech-

anism. We hope it may inspire the study of architectural

design and search in the future.
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Supplementary Material for “Selective Kernel Networks”

A. Details of the Compared Models in Table 3

We provide more details for the variants of ResNeXt-50
in Table 3 in the main body of the paper. Compared with
this baseline, “ResNeXt-50, wider” has 1

16 more channel-
s in all bottleneck blocks; “ResNeXt-56, deeper” has ex-
tra 2 blocks in the end of the fourth stage of ResNeXt-50;
“ResNeXt-50 (36×4d)” has a cardinality of 36 instead of
32. These three structures match the overall complexity of
SKNet-50, which makes the comparisons fair.

B. Details of the Models in Table 4

For fair comparisons, we re-implement the Shuf-
fleNetV2 [6] with 0.5× and 1.0× settings (see [6] for de-
tails). Our implementation changes the numbers of blocks
in the three stages from {4,8,4} to {4,6,6}, therefore the
performances and computational costs are slightly different
from those reported in the original paper [6] (see Table 4 in
the main body of the paper for detailed results). In Table 4,
“+ SE” means that the SE module [4] is integrated after each
shuffle layer in ShuffleNetV2, “+ SK” means that each 3×3
depthwise convolution is replaced by a SK unit with M = 2
(K3 and K5 kernels are used in the two paths, respectively),
r = 4 and G is the same as the number of channels in the
corresponding stage due to the depthwise convolution.

Note that the 3×3 depthwise convolution in the original
ShuffleNet is not followed by a ReLU activation function.
We verify that the best practice for integrating SK units in-
to ShuffleNet is also without ReLU activation functions in
both paths in each SK unit (Table S1).

K3
+ ReLU ?

K5
+ ReLU ?

Top-1 error (%)

3 7 28.65
7 3 28.40
7 7 28.36
3 3 28.49

Table S1. Influence of activation functions in two paths of SK units
based on ShuffleNetV2 1.0×. Single 224×224 crop is used for
evaluation on the ImageNet validation set.

C. Details of the Compared Models in Figure 2
We have plotted the results of some state-of-the-art mod-

els including ResNet, ResNeXt, DenseNet, DPN and SENet
in Figure 2 in the main body of the paper. Each dot repre-
sents a variant of certain model. Table S2 shows the set-
tings of these variants, the numbers of parameters, and the
evaluation results on the ImageNet validation set. Note that
SENets are based on the corresponding ResNeXts.

Method #P Top-1 error (%)

ResNet-50 [3] 25.56M 23.9

ResNet-101 [3] 44.55M 22.6

ResNet-152 [3] 60.19M 21.7

DenseNet-169 (k=32) [5] 14.15M 23.8

DenseNet-201 (k=32) [5] 20.01M 22.6

DenseNet-264 (k=32) [5] 33.34M 22.2

DenseNet-232 (k=48) [5] 55.80M 21.3

ResNeXt-50 (32×4d) [7] 25.00M 22.2

ResNeXt-101 (32×4d) [7] 44.30M 21.2

DPN-68 (32×4d) [1] 12.61M 23.7

DPN-92 (32×3d) [1] 37.67M 20.7

DPN-98 (32×4d) [1] 61.57M 20.2

SENet-50 [4] 27.7M 21.12

SENet-101 [4] 49.2M 20.58

SKNet-26 16.8M 22.74

SKNet-50 27.5M 20.79

SKNet-101 48.9M 20.19

Table S2. The top-1 error rates (%) on the ImageNet validation set
with single 224×224 crop testing.

D. Implementation Details on CIFAR Datasets
(Section 4.2)

On CIFAR-10 and CIFAR-100 datasets, all networks are
trained on 2 GPUs with a mini-batch size 128 for 300 e-
pochs. The initial learning rate is 0.1 for CIFAR-10 and
0.05 for CIFAR-100, and is divided by 10 at 50% and 75%
of the total number of training epochs. Following [3], we
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Figure S1. Attention results for two randomly sampled images with three differently sized targets (1.0x, 1.5x and 2.0x). The notations are
the same as in Figure 3a,b.

use a weight decay of 5e-4 and a momentum of 0.9. We
adopt the weight initialization method introduced in [2].
The ResNeXt-29 backbone is described in [7]. Based on
it, SENet-29 applies SE unit before each residual connec-
tion, and SKNet-29 modifies the grouped 3×3 convolution
to SK convolution with setting SK[2, 16, 32]. In order to

prevent overfitting on these smaller datasets, we replace the
5×5 kernel in the second path in the SK unit to 1×1, while
the setting for the first path remains the same.



E. More Examples of Dynamic Selection
Figure S1 shows attention results for more images with

three differently sized targets. Same as in Figure 3 in the
main body of the paper, we see a trend in low and middle
level stages: the larger the target object is, the more atten-
tion is assigned to larger kernels by the dynamic selection
mechanism.
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