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Attractor networks are widely believed to underlie the memory systems
of animals across different species. Existing models have succeeded in
qualitatively modeling properties of attractor dynamics, but their com-
putational abilities often suffer from poor representations for realistic
complex patterns, spurious attractors, low storage capacity, and difficulty
in identifying attractive fields of attractors. We propose a simple two-layer
architecture, gaussian attractor network, which has no spurious attractors
if patterns to be stored are uncorrelated and can store as many patterns
as the number of neurons in the output layer. Meanwhile the attrac-
tive fields can be precisely quantified and manipulated. Equipped with
experience-dependent unsupervised learning strategies, the network can
exhibit both discrete and continuous attractor dynamics. A testable pre-
diction based on numerical simulations is that there exist neurons in the
brain that can discriminate two similar stimuli at first but cannot after
extensive exposure to physically intermediate stimuli. Inspired by this
network, we found that adding some local feedbacks to a well-known
hierarchical visual recognition model, HMAX, can enable the model to
reproduce some recent experimental results related to high-level visual
perception.

1 Introduction

Attractor network theories suggest that memories are represented as steady
states in recurrent neural networks (Hopfield, 1982; Amit, 1989; Fuster, 1995;
Papp, Witter, & Treves, 2007), which is believed to underlie persistent neural
activity observed in a wide variety of regions of the nerve system—for ex-
ample, the prefrontal cortex (PFC) of monkeys (Fuster, 1995; Goldmanrakic,
1996), the anterior dorsal nucleus of the rodent thalamus (Sharp, Blair, &
Cho, 2001), and the prepositus hypoglossi and the medial vestibular nu-
cleus of mammals (Seung, Lee, Reis, & Tank, 2000). Emerging evidence
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also demonstrated that dynamics can evolve from unstable states to steady
states. For instance, single-cell recordings (Wills, Lever, Cacucci, Burgess, &
O’Keefe, 2005) showed that when rats were exploring boxes of intermediate
shapes varying between a square and a circle after they were familiarized
with the square and circular boxes, the place cell activities in the CA1 re-
gion of the hippocampus were either similar to those when they were in the
square box or similar to those when they were in the circular box. Though
a different finding was reported in Leutgeb, Leutgeb, Treves et al. (2005),
theoretical models indicated that it complemented rather than challenged
attractor theories (Blumenfeld, Preminger, Sagi, & Tsodyks, 2006; Papp et al.,
2007).

Similar categorization phenomena to the rats study (Wills et al., 2005)
have been observed in human inferior temporal cortex (ITC) (Rotshtein,
Henson, Treves, Driver, & Dolan, 2005), the highest purely visual area in
the ventral visual stream. Subjects were exposed to sequences of facial
images with incremental changes between pairs of famous faces. A behav-
ioral experiment was performed to determine the psychological boundary
of the two face categories on each sequence. Subsequent fMRI adaptation
experiments showed that the right fusiform gyrus (FFG), including the in-
dependently defined right fusiform face area (FFA), could differentiate faces
belonging to different categories but could not differentiate faces belong-
ing to the same category. Rotshtein et al. (2005), Leutgeb, Leutgeb, Moser,
and Moser (2005), and Lansner (2009) suggested that attractor dynamics
was one of the most possible causes for these observations. However, if the
morph sequences were created between unfamiliar source faces, the right
FFG could differentiate two faces with a fixed distance between them on the
sequence, despite their exact locations on the sequence (Jiang et al., 2006;
Gilaie-Dotan & Malach, 2007).

The evidence also indicates that formation of attractors relies on past
experiences. For instance, the seemingly incongruent results in Wills et al.
(2005) and Leutgeb, Leutgeb, Treves et al. (2005) were speculated to be due
to different training protocols (Blumenfeld et al., 2006), while the seem-
ingly incongruent results in Rotshtein et al. (2005), Jiang et al. (2006), and
Gilaie-Dotan and Malach (2007) were speculated to be due to different
familiarity degrees to the stimuli. It was reported that accumulated experi-
ences can make primates perform better in discrimination tasks (Logothetis,
Pauls, & Poggio, 1995; Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999),
recognition (Rainer & Miller, 2000), and categorization tasks (Freedman,
Riesenhuber, Poggio, & Miller, 2006). Supporting these facts, considerable
evidence has indicated that training can increase the selectivity of neurons
along the visual pathway of primates, including the V1 (Schoups, Vogels,
Qian, & Orban, 2001), V4 (Raiguel, Vogels, Mysore, & Orban, 2006), ITC (Lo-
gothetis et al., 1995; Freedman et al., 2006), and PFC (Rainer & Miller, 2000)
areas. Moreover, increased selectivity was observed even when monkeys
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were passively viewing the stimuli (Freedman et al., 2006). A recent study
demonstrated that extensive learning enhanced selectivity but degraded
tolerance of ITC neurons (Zoccolan, Kouh, Poggio, & DiCarlo, 2007). From
the viewpoint of attractor theory, these observations imply that practice can
sharpen the attractive fields of patterns, a process that can be unconscious.
Theoretical models have to take into account, or at least provide interfaces
for incorporating, such experience-dependent learning strategies to model
realistic nerve systems.

A number of attractor models have been proposed (Hopfield, 1982;
Fuster, 1995; Cohen & Grossberg, 1983; Amit, 1989; Papp et al., 2007; Mengh-
ini, van Rijsbergen, & Treves, 2007; Zeng & Wang, 2007). However, their
computational capabilities are greatly limited in several ways, including
spurious attractors (attractors corresponding to unwanted memories), low
storage capacity, inefficient pattern representations, and rather different
structures from efficient information processing models. Therefore, it is dif-
ficult for them to process realistic complex patterns directly or in combina-
tion with other models such as in Mel (1997) and Riesenhuber and Poggio
(1999). In addition, it is often hard to precisely manipulate the attractive
fields of memories in these models, which could vary with experience. In
some models (Hopfield, 1982; Cohen & Grossberg, 1983; Amit, 1989; Chua
& Yang, 1988; Zeng & Wang, 2007), the attractive fields are determined
by the representations of the stored memories, and it would be difficult
to modify the attractive fields without affecting the representations of the
memories; in other models (Papp et al., 2007; Menghini et al., 2007), a precise
description of the entire dynamics is lacking, and it is hard to quantify the
attractive fields analytically. These inherent deficiencies make these models
difficult to incorporate in some learning strategies such as the sharpening
of attractive fields.

Here we describe a simple two-layer network, termed gaussian attrac-
tor network (GAN), in which any attractor corresponds to an intentionally
stored pattern, and the geometry of the attractive field of the pattern is
independent of the pattern representation and can be precisely quantified.
The memory capacity can be equal to the number of neurons in the out-
put layer through unsupervised learning regardless of initial correlations
among patterns to be memorized. The GAN offers a flexible framework to
describe various physiological and psychological results that relate to mem-
ory and recognition by incorporating some experience-dependent learning
strategies. More important, its architecture agrees well with an efficient
feedforward visual recognition model, HMAX (Riesenhuber & Poggio,
1999; Serre, Oliva, & Poggio, 2007; Serre, Wolf, Bileschi, Riesenhuber, &
Poggio, 2007), which emulates the primate ventral pathway from V1 to PFC.
Based on the GAN, it is found that adding some local feedback can enable
the HMAX to replicate some intriguing experimental findings mentioned
earlier.
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Figure 1: Schematic of the GAN. Only the feedback connections to the j th state
are shown.

2 Gaussian Attractor Network

2.1 Basic Model. The proposed model consists of two layers as shown
in Figure 1. A set of inputs x1, . . . , xm is fed into every unit vi in the output
layer through synaptic weights ci j where i = 1, . . . , n, j = 1, . . . , m. Each
unit in the output layer has a gaussian activation function vi centered at the
afferent weights, which represent a pattern to be memorized. The function
vi is multiplied by a strength factor wi ≥ 0 and a gain factor (xj − ci j ) whose
sign determines the nature of the afferent xj : excitatory or inhibitory. Sum
the results across i together, and feed into an integrator, and we obtain the
updated xj . The dynamics of the network is described by

dxj

dt
= −

n∑
i=1

(xj − ci j )wivi (x), j = 1, . . . , m (2.1)

with the output equation

vi (x) = e−‖x−ci ‖2/σ 2
i , i = 1, . . . , n, (2.2)

where ‖ · ‖ stands for the Euclidean norm, wi , σi are scalars, and x, ci are
m-dimensional vectors. In what follows, wi and σi are, respectively, termed
the strength and width of pattern ci , which are closely related to the notion
of the attractive field of ci , defined as a set from which any initial state will
converge to ci .
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Note that the major components of the proposed model, the gaussian
functions, have been considered basic elements in neural networks for
decades (Poggio & Edelman, 1990; Park & Sandberg, 1991), and different
mechanisms have been suggested for realizing them in the brain (Knoblich,
Bouvrie, & Poggio, 2007; Kouh & Poggio, 2008). Therefore, the architecture
in Figure 1 is also realizable by neuronal circuits. Similar infrastructures
can be produced by using VLSI technology (Lin, Huang, & Chiueh, 1998;
Peng, Hasler, & Anderson, 2007), which makes it possible to devise very
fast application-specific circuits (Hopfield & Tank, 1986). In what follows,
we focus on the analysis of the properties of the model.

Define an energy function

E(x) = −1
2

n∑
i=1

wiσ
2
i vi (x), (2.3)

which is bounded below. It is easy to check that dxj/dt = −∂ E/∂xj . Taking
the derivative of E with respect to time t, we have

d E
dt

= −
m∑

j=1

(
∂ E
∂xj

)2

≤ 0.

The energy function decreases until its gradient vanishes, and a local min-
imum, maximum, or saddle point is reached. Since isolated maxima and
saddle points are not stable, in view of the widely spread noise in the brain,
we concentrate on the analysis of local minima (both isolated and con-
nected) and connected local maxima. Note that E(x) is the weighted sum
of a set of inverted-bell-shaped functions fi (x) � −wiσ

2
i vi (x)/2. It is easy

to see that if the centers of these functions are far from each other or their
open widths are small enough so that the open areas do not overlap, then
all centers are isolated local minima of E(x), and the state of the network
from any initial point within the open area of fi (x) will converge to ci . In
this case, the attractive field of pattern ci is indeed the open area of fi (x).
If an input is located outside any attractive field, that is, in the connected
local maxima (also local minima) region of the energy function, the network
state is called marginally stable, and this input represents a new pattern to
be stored through synaptic modifications rather than a spurious attractor.

Overlap-free among open areas of fi (x)’s corresponds to the orthogonal-
ity of binary-coded patterns in some networks (Hopfield, 1982; Amit, 1989;
Chua & Yang, 1988; Chartier & Proulx, 2005; Casali, Costantini, Perfetti,
& Ricci, 2006; Zeng & Wang, 2007). In contrast to those networks, which
can result in many unwanted attractors even in an orthogonal case, every
isolated attractor in the GAN represents a pattern intended to be stored.

If the open areas of fi (x)’s have overlaps, the patterns are said to be cor-
related, and several memories may merge into one. Blumenfeld et al. (2006)
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Figure 2: Storing correlated patterns represented by two-dimensional points.
(A–D) Eleven patterns are evenly spread on a straight line between (0, 0) and
(10, 5) with pattern widths σi = 3, and (E–H) 10 × 10 patterns are evenly spread
on a square with pattern widths σi = 2. (A, E) Energy functions with all strengths
equal to one. (B, F) Energy functions with strengths for extreme patterns equal to
one and strengths for other patterns equal to zero. (C, G) Energy functions with
strengths obtained through extensive training by using the learning rule, equa-
tion 2.4. (D, H) Bell-shaped steady response of the output neurons arranged on
the line or the square for an arbitrary input after the formation of an approximate
line attractor or plane attractor as shown in C and G. The response topogra-
phies, respectively, center around the two neurons whose centers correspond to
the inputs.

demonstrated that if a sequence of gradually changing binary patterns is
presented to the standard Hopfield network (Hopfield, 1982), the only at-
tractor would be the pattern located at the middle of the sequence. This con-
clusion also holds for the GAN if we set identical widths and strengths for all
patterns located equidistant on a straight line in the state space (see Figure
2A for a two-dimensional example and the appendix for analysis). The con-
clusion can be extended to the case of patterns evenly distributed in a hyper-
plane. If identical strengths are used, all patterns will be attracted to the cen-
ter pattern as they can be regarded as densely distributed on multiple lines
crossing the center pattern (see Figure 2E for a two-dimensional example).

Before moving to the next section, we point out an interesting fact. The
energy function in equation 2.3 can be regarded as the output of a particular
radial basis function (RBF) network with m input neurons, n hidden neu-
rons, and one output neuron. In addition, the hidden neurons use gaussian
functions as activation functions; the input weights are, respectively, the
gaussian centers, and the output weights are, respectively, −wiσ

2
i /2.

2.2 Experience-Dependent Learning. Formation of memories is a dy-
namic and experience-dependent process in the brain. As Blumenfeld et al.
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(2006) suggested, the weights learning rule should reflect experimental ob-
servations: novel signals tend to induce higher neural activities and thus
higher synaptic strength modifications than familiar signals. A modified
history-dependent memory consolidation rule to that in Blumenfeld et al.
(2006) is thus adopted here,

wi (k + 1) = wi (k) + αd + δ, (2.4)

where d is a parameter to quantify the level of novelty to the stimuli (the
larger, the more novel), α > 0 is learning efficiency, and δ > 0 is a small in-
crement to account for the instantaneous influence of the input. Throughout
the letter, α = 0.2 and δ = 0.005 are used in simulations. Every time a stim-
ulus is present, the corresponding weight is updated. Note that we do not
specify a rule for decreasing the weights. To prevent them from increasing
unboundedly, the weights are normalized by setting the maximum to one
if it is greater than one.

A natural choice for d is the distance in the state space between the input
and the pattern it converges to. Nevertheless, in a realistic system, d does not
need to be so accurate. Here we let d be the (normalized) traveling distance
of the state within a time window from the onset of the stimulus, which
seems to be more biologically plausible. This is analogous to the first-step
distance used by the discrete version of the Hopfield network in Blumenfeld
et al. (2006). Throughout the letter, a time window of 20 time units was
used in simulations. Simulation results with this time window being 50 or
100 time units were not radically different from those presented in the letter.

For storing uncorrelated patterns, d is equal to zero, and only δ takes
effect. For storing correlated patterns, the above rule enables the GAN to
exhibit continuous attractors dynamics, similar to the modified Hopfield
network (Blumenfeld et al., 2006). Figures 2C and G visualize the energy
functions for storing two sets of two-dimensional patterns. It is seen that a
line attractor and a plane attractor are formed, respectively. Because of the
gaussian activation function used in equation 2.2, the output of neurons
elicited by any afferent is always bell shaped (see Figures 2D and H for
examples).

In the following we describe the dynamic process of the GAN for storing
a sequence of linearly changing patterns (see Figure 3). Suppose that the
GAN has successfully memorized the two end patterns c1 and cn (this can
be attained by setting w1 = wn = 1 and other wi ’s equal to zero). When
pattern ci is presented to the network, it can be predicted that during the
first few trials, the state of the network with learning algorithm 2.4 will
be attracted to c1 if ci is located in the former half of the sequence, and it
will be attracted to cn if it is located in the latter half, which is confirmed
by Figure 3A. Both gradual presentation (patterns in the sequence were
presented from the first to the last) and random presentation (patterns were
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Figure 3: Learning a set of patterns represented by 20 equidistant points on a
line in 100-dimensional real space with pattern widths σi = 26. The two extreme
points are (0, . . . , 0) and (10, . . . , 10) in (A)–(C) and (0, . . . , 0) and (4, . . . , 4) in
(D)–(F). (A) and (D) plot the normalized Euclidean distances of attractors to
the first pattern after the first training epoch. (B) and (E) plot the normalized
Euclidean distances of attractors to the first pattern after the 30th training epoch.
(C) and (F) are the same as (B) and (E), respectively, except that the attractive
field sharpening rule, equation 2.5, is used with σmin = 6. Filled circles: random
protocol; empty circles: gradual protocol. Initially pattern strengths for the two
extreme patterns were equal to one and for others were equal to zero. The
maximum pattern strength was normalized to one before each training epoch
if it was greater than one. For the random protocol, results were averaged over
30 independent runs (error bars: s.e.m).

presented in scrambled orders) resulted in step-like distance curves. But
the curve of the gradual presentation shifts to the right slightly relative
to that of the random presentation. It was found that the behavior of the
network relied on the distance between the first and last patterns in the
sequence. Figure 3D shows that if the distance is shortened, the step-like
curve produced by the first trial of the random protocol is squeezed along
the vertical axis, whereas the gradual protocol produces a semilinear curve.
Figures 3A and 3D, respectively, resemble the electrophysiological data
obtained on rats in Wills et al. (2005) and Leutgeb, Leutgeb, Treves et al.
(2005); (see also section 4).

As the training is repeated, if the extreme patterns are distant, then each
pattern tends to be drawn to itself regardless of training protocols (see
Figure 3B); otherwise, all the memories merge to one (see Figure 3E). The
complete merging prediction contradicts the common belief that practice
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improves discrimination and recognition ability. As mentioned in section
1, evidence suggests that attractive fields of recurrent neuronal networks
distributed in the nerve system may shrink with accumulated experiences.
This effect can be easily accounted for by decreasing the pattern width σi ’s.
Clearly the amount of the sharpening effect should also depend on expe-
rience. It is reasonable to assume that multiple exposures or a prolonged
exposure time to a pattern would lead to further decrease of its width than
a single short period exposure. In particular, if pattern ci is presented re-
peatedly, we adopt the following simple rule in this letter (though other
rules may be more appropriate),

σi (k + 1) = max(βσi (k), σmin), (2.5)

where 0 < β < 1 denotes the rate of decrease and σmin denotes the biological
limit (β = 0.95 is always used in this letter). If σmin could be arbitrarily small,
then eventually all patterns would be memorized since the correlations
among them would fade as training progresses.

Figures 3C and 3F demonstrate the behavior of the network by adding the
attractive field sharpening rule, equation 2.5. After extensive training, for
the large distance case (see Figure 3C), this rule enhances the discrimination
performance of the network slightly, while for the short distance case (see
Figure 3F), it enhances performance dramatically. Clearly, with this rule,
the prediction about discrimination ability after extensive training based
on the GAN agrees with that in Blumenfeld et al. (2006).

However, if σmin is not allowed to be so small, then all memories will
merge to one as Figure 3E shows. We think that this is possible in biological
systems. So it is speculated that there exist neurons in the nerve system
that can differentiate the stimuli at first, but they will lose this ability after
extensive exposure to many intermediate stimuli.

3 HMAX Model with Feedback Connections for Visual Recognition

HMAX model is a hierarchical feedforward network proposed by Riesen-
huber and Poggio (1999) for mimicking the primate visual system. It con-
sists of layers with linear and nonlinear units, that correspond to simple
cells and complex cells in Hubel and Wiesel’s paradigm. From lower to
higher tiers, simple features are combined to build complex ones; mean-
while, perception invariance to translation and scale of objects is realized
(see Figure 4). Each stimulus is represented by a shape-tuned unit (STU) in
the top layer, modeled by a radial basis function (e.g., gaussian function).
These STUs serve as inputs to task-relevant category-tuned units (CTUs,
not shown), and the weights are determined by supervised learning. It was
assumed that the STU-like neurons are mainly located in the ITC, while the
CTU-like neurons are mainly located in the PFC (Riesenhuber & Poggio,
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Figure 4: HMAX model with feedback connections. This particular HMAX im-
plementation (Serre, Wolf et al., 2007) consists of five layers—S1, C1, S2, C2, and
STU—whose major locations in the visual pathway are indicated on the right.
The two S layers and the STU layer perform template matching (or weighted
sum), realizing the increase of feature complexity, and the two C layers perform
a MAX operation on their afferents, realizing the scale, orientation, and transla-
tion invariance. Gaussian functions are adopted here as activation functions of
STUs. See Serre, Wolf et al. (2007) for details. Feedback connections from STU
layer to C2 layer can be drawn as in Figure 1. (Photos courtesy of Pia Rotshtein.)

1999; Serre, Oliva et al., 2007; Freedman, Riesenhuber, Poggio, & Miller,
2003). The prediction of this network agrees with a number of findings on
monkeys (Logothetis et al., 1995; Wang, Tanifuji, & Tanaka, 1998; Freedman
et al., 2003; Cadieu et al., 2007) and humans (Serre, Oliva et al., 2007; Jiang
et al., 2006) when they were engaged in visual recognition, discrimination,
or categorization tasks.
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Figure 5: Simulation results of the modified HMAX for face processing in the
right FFG of human brains. Forty-six sequences of images were generated by
92 facial images (sources), and each sequence consisted of 10 images with an
approximately equal difference between two consecutive ones. (A) Five images
(morph index: 1, 3, 5, 7, 9) in an example morph continuum. (B) Five pairs
of morphs (identical: 4 versus 4, 7 versus 7; within: 1 versus 4, 7 versus 10;
between: 4 versus 7) in each sequence were presented to the model in random
order (which one in a pair came first was also random), and the peak shift
over the morph index between the two resulting steady output responses was
calculated to represent the difference in neuronal activities elicited by each pair
of stimuli. Plotted is the mean + s.e.m. peak shift (normalized by dividing 9)
across 46 independent runs. From left to right, the panels respectively show the
results with d in 2.4 equal to the state shift within the first 20, 50, and 1000 time
units. In the familiar case, initially w1 and w10 were set to ones and the other wi ’s
were set to zeros. In the unfamiliar case, initially all wi ’s were set to zeros. σ1

and σ10 were set such that in the familiar case, the formal and latter five images
were respectively attracted to the first and last images without learning rules.
Other σi ’s were then linearly assigned values between σ1 and σ10. σmin for each
stimulus was equal to 80% of its initial value. (Photos courtesy of Pia Rotshtein.)

If a sequence of gradually morphed stimuli are presented, HMAX should
differentiate every stimulus by the peak response of the STUs. However,
this prediction was not validated in some regions of the ITC in an fMRI
experiment (Rotshtein et al., 2005). Actually it was reported that when a
pair of faces with 30% difference along a sequence of continuously morphed
faces (see Figure 5A) between two famous faces (source faces) was presented
to human subjects, the blood oxygenation level–dependent (BOLD) signal
change in the right FFG, including the right FFA, was large if the pair
crossed the perceived identity boundary obtained by behavioral tests, but
small if the pair did not cross the boundary. In the latter case, the signal
change in these areas was comparable with that for two identical images.
However, other studies (Jiang et al., 2006; Gilaie-Dotan & Malach, 2007) with
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similar experimental procedures showed that pairs 30% apart on a morph
sequence could elicit a distinguishable BOLD signal change in the right
FFG regardless of their exact locations on the sequence. This finding was
ascribed to unfamiliar source faces used in the experiments. From attractor
theories, the familiar sources imply the presence of preformed attractors,
and the unfamiliar sources imply the absence of such attractors.

As purely feedforward architectures such as HMAX preclude attractor
dynamics, recurrent or feedback connections must be taken into account
in building models to interpret these findings. To endow the HMAX with
this capability, a possible modification is to add feedback connections from
the STU layer to the C2 layer as illustrated in Figure 1. Then every STU in
Figure 4 corresponds to an output neuron vi in Figure 1, and every C2 unit
in Figure 4 corresponds to an input neuron xj in Figure 1. The feedback
signal from any STU to any C2 unit is the product of the output signal
and the difference signal between the current state and the memorized
state, modulated by a synaptic strength wi . For simplicity, we consider only
feedback from STUs to C2 units in Figure 4. In principle, such feedback can
exist from the STU layer to any layer in the downstream direction if we add
feedforward connections directly from the lower layers to the STU layer.
In that case, the afferent to the STUs will contain more detailed but less
invariant information.

This modification enables the model to replicate Rotshtein et al.’s (2005)
findings. The experiment settings are as follows. The initial stimulus set con-
sisted of 54 morph continua between 108 achromatic portraits of famous
people, and each continuum consisted of 11 morphs representing gradual
transitions from one source face to the other in steps of 10% change (see
Figure 5A for an example). (The stimuli are by courtesy of Pia Rotshtein;
more information can be found in Rotshtein et al., 2005.) All images were in
gray scale and resized to 160 × 180 pixels. In our experiments, only the first
10 morphs were selected for convenience in deciding within- and between-
category stimuli (therefore, the second source image in each continuum was
the tenth image, not exactly a source for the morph algorithm). The category
boundary for each continuum can be determined by inputting the morphs
and checking the attractor locations with w1 = w10 = 1, w2 = · · · = w9 = 0
(i.e., familiar sources case). In Rotshtein et al. (2005), the boundary was
determined by behavioral tests. But the actual location of the psychological
boundary in a continuum is not essential in simulation studies. So, for con-
venience, it is desired that the category boundary is between the fifth and
sixth images in every continuum. Then, similar to Rotshtein et al. (2005),
morphs 1 versus 4 and morphs 7 versus 10 were chosen as two within-
category pairs; morphs 4 versus 7 were chosen as a between category pair;
morphs 4 versus 4 morphs and 7 versus 7 were chosen as two identical
pairs. To satisfy the requirement, different σ1 and σ10 should be used since
the morph algorithm is not exactly linear. Here, they were randomly chosen
between 0.2 − 0.4L , where L denotes the Euclidean distance between the
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C2 features of the two source patterns extracted by HMAX, such that in the
familiar-sources case, the first five and the last five morphs were respec-
tively attracted to the two source patterns without any learning rule. Other
σi ’s were linearly assigned values between σ1 and σ10 for each continuum.
Eight morph continua that have too much nonlinearity (the difference of σ

values for the two source patterns exceeds 0.2L) were excluded in the ex-
periments. Learning rules 2.4 and 2.5 were adopted with default parameter
values.

An HMAX implementation described in Serre, Wolf et al. (2007) was
used for simulations so the S2 units were learned instead of predefined
as in Riesenhuber and Poggio (1999). To learn the S2 units, 400 patches of
four sizes at random positions were extracted from each continuum at the
C1 level, which led to 400 C2 features for representing an image. (More
information is found in Serre, Wolf et al., 2007.)

After the presentation of each stimulus, the S and C layers extract the
features and the outputs of the STUs from a gaussian response curve. Due
to the feedback connections from the STU layer to the C2 layer, the values
of C2 units may change with time. As a consequence, the peak location of
STU response curve may also change with time. Eventually an equilibrium
is reached, and both the C2 units and the STUs become constants. Then
the peak location of the STU response curve indicates the identity of the
stimulus from the perspective of the network. If two stimuli are presented,
in the resting phase, the peak locations of the STU response curve can be
identical or different, depending on the physical properties of the stimuli
and inherent dynamics. The difference between the peak locations, or peak
shift, can resemble the fMRI signal change evoked by a pair of stimuli.
Clearly the larger the shift, the larger the difference between the stimuli
from the perspective of the network. If the shift is equal to zero, the two
stimuli are treated the same. This is consistent with the assumption of fMRI
adaptation experiments.

Figure 5B (left panel) plots the statistics of the peak shifts by inputting
different pairs of morphs (between, within, and identical conditions). In the
familiar-sources case, a significantly larger peak shift of STUs in the between
condition is observed than in the within condition, though the distances in
the continuum between the two images in the two conditions are nearly the
same. The difference of shifts between the within and identical conditions is
small. In the unfamiliar-sources case, the peak shift in either the between or
within condition is significantly greater than in the identical condition, but
only a small difference is found between the between and within conditions.
We have investigated the impact of the time window for d in learning rule
2.4. The middle and right panels of Figure 5 plot the results with the time
window equal to 50 and 1000 time units. The results are similar to those in
the left panel with the default time window (20 time units).

It was reported that subjects who were shown a series of morphed visual
stimuli between two source stimuli were more likely to perceive the identity
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Figure 6: Simulation results of the modified HMAX for visual perceptual adap-
tation. All morphs in each of the 46 sequences were presented to the model in
a scrambled order with and without a preceding presentation of the adapting
stimulus (the first image in the sequence). Plotted is the mean ± s.e.m. normal-
ized peak shift of the STU response curve at resting phase to the first image
across 46 independent runs. For adapting stimuli, σ was set to σmin (70% of its
initial value) directly instead of using learning rule 2.5. Other parameter set-
tings were the same as in the familiar case of Figure 5. Similar curves will be
produced if we quantify the difference between attractors to the first image by
Euclidean distance in the C2 space (as in Figure 3).

of one source in an ambiguous pattern after they had been exposed to the
other source (called adapting stimuli) for a long time. The sources could
be facial images (Webster, Kaping, Mizokami, and Duhamel, 2004; Fox &
Barton, 2006), body images (Winkler & Rhodes, 2005) or object views (Fang
& He, 2005), which were familiarized to subjects before testing. From the
viewpoint of attractor theory, these findings can be interpreted as caused
by attractive field sharpening. We tested this assumption as follows. First,
we presented the 46 sequences of morphs used in Figure 5 to the modified
HMAX model by presetting the strengths of sources as ones and the others
as zeros. As expected, the perception boundary was found to be between
the morphs 5 and 6 (see the curve with filled circles in Figure 6). Then with
the same initial parameter settings, we repeated the experiments. But this
time, before each morph presentation, an adapting image (the first morph
in every continuum) was presented to the model for a much longer period,
and this fact was accounted for by decreasing 30% of the corresponding σ .
As indicated previously, prolonged presentation of the adapting stimulus
will cause a significant sharpening of its attractive field, corresponding to
a significant decrease of σ in the GAN. The curve with empty circles in
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Figure 6 shows a large “perception” boundary shift toward the adapting
stimuli, which is consistent with the results of the behavioral tests.

4 Discussion

The dynamics in every deterministic attractor network can be regarded as
originating from a search process for a local minimum of an abstract energy
function, and the proposed gaussian attractor network (GAN) implements
this idea intuitively. The energy function of the model is a weighted sum of
a set of inverted gaussian functions whose centers represent patterns to be
memorized and whose open widths determine the attractive basins. This
novel function offers many advantages for the GAN in modeling various
results from single-cell recordings to a high-level perception, including no
spurious attractors, large storage capacity, and dissociation of the memory
representation and its attractive field. In addition, the structure of the GAN
is compatible with a well-known visual recognition model HMAX (Mel,
1997; Riesenhuber & Poggio, 1999; Serre, Oliva et al., 2007; Serre, Wolf et al.,
2007), and the combination of them can quantitatively reproduce some
experimental data.

4.1 Experience-Dependent Learning. The novelty-facilitated learning
rule, equation 2.4, and the correlation between the preformed memories
can reconcile some apparently conflicting data on rats. Wills et al. (2005)
reported that when rats were exploring different environments, which con-
stituted a morph sequence, the firing rate pattern in the CA1 region was
either similar to that in the first or that in the last environment on the
sequence, and the two extreme environments were familiarized to them
before these tests. But a different finding was reported in Leutgeb, Leutgeb,
Treves et al. (2005). It was found that during tests, the firing rate patterns in
both the CA1 and CA3 regions change continuously from the first to the last
environments. There are two major discrepancies between the experimental
procedures. First, the environments were presented to rats in a scrambled
order in Wills et al. (2005) but in a gradual order in Leutgeb, Leutgeb, Treves
et al. (2005). Second, before tests, the rats in Wills et al. (2005) exhibited
stronger firing pattern dissociation in the two extreme environments than
in Leutgeb, Leutgeb, Treves et al. (2005), which suggests more distinct rep-
resentations of the two environments in the CA region in Wills et al. (2005).
In the language of the GAN, this means a larger distance between the two
extreme patterns in the state space. Therefore, the filled circle curve in Fig-
ure 3A and the empty circle curve in Figure 3D, respectively, resemble the
two findings. Note that in Blumenfeld et al. (2006), only the exposure order
was identified as a cause of these findings, whereas the initial correlation
between the two extreme pattern representations was not identified.

If the two extreme patterns have large correlations, our simulations
showed that without attractive field sharpening, all memories will merge
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into one after extensive training (see Figure 3E). The attractive field sharp-
ening strategy could enable the nerve system to memorize all patterns be-
tween the two extreme ones (see Figure 3F). In a realistic system, however,
because of the biological limit on the attractive field width, we speculate
that even with attractive field sharpening, if two stimuli are too similar,
there exist neurons in the nerve system that can differentiate the stimuli at
first (see Figure 3D), but will lose this ability after extensive training with
many physically intermediate stimuli (see Figure 3E). In other words, we
are questioning the notion that training always improves the discrimina-
tion ability of neurons, as Blumenfeld et al. (2006) claimed. A psychological
study seems to support our prediction (Preminger, Sagi, & Tsodyks, 2007).
After they were shown morph sequences of faces gradually and repeatedly,
subjects tended to lose the ability to discriminate the morphs that were
created between similar source faces. This effect did not occur when the
perceived similarity between the source faces was low. Nevertheless, this
effect did not occur with a random training protocol no matter how similar
the source faces were, which cannot be explained by the GAN. Physiological
studies are required to test this prediction at the neuron level.

Continuous attractors have been taken to explain many experimental
observations, for example, line attractor for eye position memory (Seung
et al., 2000), plane attractor for place cells of rodents (Samsonovich & Mc-
Naughton, 1997), and ring attractor (actually a one-dimensional line at-
tractor along angular axis in the range of 2π ) for orientation tuning cells
in the V1 area of primates (Ben-Yishai, Bar-Or, & Sompolinsky, 1995) and
head direction tuning cells of rodents (Zhang, 1996; Sharp et al., 2001). A
major limitation of these models is that the connections are prespecified,
though there are exceptions (Stringer, Rolls, Trappenberg, & de Araujo,
2002). In contrast, the GAN with rules 2.4 and 2.5 can learn to exhibit var-
ious dynamics, including discrete attractor (see Figures 2B and 2F), line
attractor (see Figure 2C), and plane attractor (see Figure 2G) dynamics in a
self-organizing manner. It thus has great potential for modeling related phe-
nomena. For instance, inside the plane attractors formed by the GAN, the
output neurons can generate a bump activity everywhere (see Figure 2H),
representing a chart or a cognitive map inside the hippocampal field of
rats (Samsonovich & McNaughton, 1997; McNaughton, Battaglia, Jensen,
Moser, & Moser, 2000). The small increment signal δ in equation 2.4 drives
the bump toward the correct location on the chart, representing the force
exerted by external environmental stimuli or events. However, to emulate
a parallel navigational system that is also able to calculate where an animal
is at the moment but independent of environmental clues, path integration
needs to be performed (Samsonovich & McNaughton, 1997; McNaughton
et al., 2000).

4.2 Modified HMAX Model. A tacit assumption behind the purely
feedforward architecture of the original HMAX model (Riesenhuber &
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Poggio, 1999) is that during a very short time interval after the stimulus
onset, top-down signals are not likely to be present given the number of
processing stages involved and typical neural latencies (Serre, 2007). This
assumption is supported by electrophysiological (Hung, Kreiman, Poggio,
& DiCarlo, 2005) and psychological (Serre, Oliva et al., 2007) studies on
primates. But it does not preclude transmission of local feedback signals
inside ITC or from ITC to V4 (see Figure 4) after that short period. Note that
a very short (<200 ms) presentation of stimuli might be sufficient for read-
out of the identity information of dissimilar objects (Hung et al., 2005) or
for accomplishing the animal versus nonanimal categorization task (Serre,
Oliva et al., 2007), but it is insufficient for recognizing similar objects. Ac-
tually, in the experiments that we have modeled with the modified HMAX
(Rotshtein et al., 2005; Webster et al., 2004; Fox & Barton, 2006; Winkler
& Rhodes, 2005; Fang & He, 2005), the stimuli were usually presented for
more than 200 ms. Moreover, the images used in Hung et al. (2005) and
Serre, Oliva et al. (2007) have large variations compared with the morph
images used in Rotshtein et al. (2005); Webster et al. (2004), Fox and Barton
(2006), Winkler and Rhodes (2005), and Fang and He (2005). It is easy to see
that if the afferent patterns are not correlated, then the modified HMAX can
give similar results to the original model in view of the fact that the minima
of the energy function of the GAN roughly correspond to the individual
efferent neurons’ maxima in this case.

In neurophysiological experiments, categorical cells are often found to
be concomitant with cells tuning to individual stimuli, and the two types of
cells are believed to respectively mediate the pattern completion and pattern
separation channels for memory and recognition. When sets of morphed
stimuli were shown to monkeys, both categorical cells and differentiating
cells are found in the ITC and PFC (Freedman et al., 2003). However, the
categorical cells in the ITC are less task relevant than in the PFC, suggesting
that the categorical phenomenon in the ITC is more likely a result of attrac-
tors without supervised learning, whereas the phenomenon in the PFC is
a result of supervised learning, which is consistent with the prediction of
the modified HMAX. On the other hand, fine tuning to individual afferent
patterns does not exclude the possibility that attractors with sufficiently
small attractive fields are the underlying mechanism.

It is known that feedback in the vertebrate visual system exists almost
everywhere. We have shown that the HMAX with feedback from the STU
layer to the C2 layer is already capable of reproducing some experimental
data in the IT cortex (see Figures 5 and 6). At present, it is unclear how to
add the feedback connections between every two layers in HMAX. But in
principle, neither the feedforward nor the feedback connections are nec-
essary to be between two adjacent layers. For example, the C1 layer can
have direct feedforward connections to the STU layer, while the STU layer
can have direct feedback connections to the C1 layer, and the connections
can be drawn similarly as between the C2 and STU layers (see Figure 4). It
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depends on how detailed information is required by the STUs. In view of
the agreement between the simulation results and the experimental data, it
might be appropriate to think that the particular feedback connections in
the modified HMAX shown in Figure 4 have accounted for the effect of all
feedback connections along the ventral pathway. There also exist recurrent
connections in the same tier in this pathway. The modified HMAX does not
explicitly model this fact. But some lateral inhibitory connections are be-
lieved to be existent in the STU layer to do weights normalization (see, e.g.,
Kouh & Poggio, 2008). This is to prevent the weights from increasing too
much with equation 2.4; otherwise all memories would completely corrupt
to one with repeated presentations of stimuli.

Note that other attractor networks may also be combined with the HMAX
on the top two layers. We speculate that such integrated architectures could
produce similar results to those in Figures 5 and 6. The advantages of the
GAN discussed in section 2 may not distinguish it from other models in
reproducing these experimental data. From the viewpoint of the HMAX, it
is the structural similarity with the HMAX’s C2 and STU layers that dis-
tinguishes the GAN from other attractor networks. Note that the modified
HMAX architecture, illustrated in Figure 4, has the same number of C2
neurons and STU neurons as in the original HMAX, while the STU neurons
have the same bell-shaped tuning curves as in the original HMAX, which
are believed to be a hallmark of IT neurons (Logothetis et al., 1995). This
integrated model can be regarded as resulting from adding some feedback
connections to the original HMAX as if no other models were incorporated.
Existing attractor networks cannot be combined with the HMAX so well.
For example, if a Hopfield network is used, the number of neurons in the
C2 and STU layers must be different from those in the original HMAX.

The modified HMAX model can successfully reproduce the perceptual
adaptation aftereffect (see Figure 6) based on the principle that prior expe-
rience to a stimulus sharpens the tuning curves of neurons (Schoups et al.,
2001; Logothetis et al., 1995; Freedman et al., 2006; Rainer & Miller, 2000;
Raiguel et al., 2006; Zoccolan et al., 2007). But this is not the only possible
mechanism underlying this phenomenon. An alternative cause might be
neural fatigue, which can suppress responses to repeated or adapted stim-
uli while enhancing responses to novel or nonadapted stimuli. A theoretical
model implementing this idea by decaying firing rates for output neurons
for a long time can also reproduce such aftereffects (Menghini et al., 2007).
Further evidence is needed to validate the proposals.

Appendix

Here we show that a set of correlated patterns ci evenly distributed on a line
segment L in the state space with identical widths σi ’s and strengths wi ’s
can result in one attractor only at the middle of L for the GAN. What we only
need to show is that if the number of patterns is large, the energy function
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E(x) defined in equation 2.3 has a unique minimum at the midpoint of L .
Note that we do not consider the points far away from the line segment L ,
which constitute the connected local maxima region.

For convenience, let

fi (x) = −1
2
wiσ

2
i vi (x). (A.1)

Then the energy function defined in equation 2.3 becomes E(x) =∑n
i=1 fi (x). Before the analysis, we give a definition. A continuously dif-

ferentiable function g : Rm → R is called a pit function if it (i) has a unique
minimum at c and (ii) is symmetric about c, i.e., g(x) = g(2c − x). In addition,
c is called the center of g. Clearly the function fi (x) defined in equation A.1
is a pit function. The aim is to show that E(x) is also a pit function. The
proof is given in three steps.

Step 1 (minima must be on L). It is easy to see that E(x) has at least one
local minimum. We need to ensure that any minimum must be located on
L , which can be reasoned as follows. For any x �∈ L ,

∇E(x) =
n∑

i=1

∇ fi =
n∑

i=1

γi (x)(x − ci ), (A.2)

where ∇ denotes the gradient and γi (x) = wi e−‖x−ci ‖2/σ 2
i > 0. Let u de-

note the unit vector along L and define a linear subspace V = span{u}.
Decompose the vector (x − ci ) into two components (x − ci )// ∈ V and
(x − ci )⊥ ∈ V⊥ where V⊥ is the orthogonal complement of V in the m-
dimensional real space. Then (x − ci )// = 〈x−ci ,u〉

〈u,u〉 u = 〈x − ci , u〉u where 〈·〉
denotes the inner product. It follows that

(x − ci )⊥ = x − ci − (x − ci )//

= x − ci − 〈x − ci + c j − c j , u〉u
= x − ci − 〈x − c j , u〉u − 〈c j − ci , u〉u
= x − c j − 〈x − c j , u〉u = (x − c j )⊥ �= 0.

Let ∇// E = ∑n
i=1 γi (x)(x − ci )// and ∇⊥ E = ∑n

i=1 γi (x)(x − ci )⊥; then ∇E =
∇// E + ∇⊥ E and the two components ∇// E and ∇⊥ E are orthogonal. Obvi-
ously ∇⊥ E is in no way equal to zero. In other words, the gradient of E(x)
will never vanish outside L , and any minimum must be on L . See Figure 7A
for the geometric interpretation of these arguments.
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Figure 7: Illustration of complete merging of attractors for correlated patterns.
(A) Decomposition of ∇E(x) for patterns on a line segment L in the state space
when x �∈ L . (B) Summing two pit functions centered at c1 and c2 results in
another pit function centered at c̄ = (c1 + c2)/2. (C) Two examples for arranging
the order of summations of n pit functions. (Left) At every step k, the number of
pit functions f (k)

i to be paired consecutively is even, and the maximum interval
θ (k) required to result in the half number of new pit functions can be determined
by any pair. (Right) At k = 1 and k = 2, the numbers of pit functions to be paired
are both odd. So at k = 1, f (1)

4 is excluded from the sum, and θ (1) is determined
by f (1)

3 and f (1)
5 , not by f (1)

1 and f (1)
2 , or f (1)

6 and f (1)
7 . Likewise, at k = 2, f (2)

2 is
excluded from the sum, and θ (2) is determined by f (2)

1 and f (2)
3 .

Step 2 (two pit functions merge to one). Let φ1(x) and φ2(x) be two pit
functions of the same shape centered at c1 and c2 on L , respectively, and
h(x) = φ1(x) + φ2(x). Clearly h has at least one local minimum. We prove the
following result in what follows: if all local minima of h are on L and c1 and
c2 are close enough, then h is also a pit function, centered at c̄ = (c1 + c2)/2.
Clearly, if φ1 and φ2 are inverted gaussian functions defined in equation A.1,
according to step 1, the condition is satisfied.

The same shape of φ1 and φ2 implies that φ1(x) = φ2(c2 − c1 + x) and
φ2(x) = φ1(c1 − c2 + x). It follows that

h(x) = φ2(c2 − c1 + x) + φ1(c1 − c2 + x)

= φ2(2c2 − 2c̄ + x) + φ1(2c1 − 2c̄ + x)

= φ2(2c̄ − x) + φ1(2c̄ − x) = h(2c̄ − x).
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Hence, h is symmetric about c̄. In addition, it is trivial to show that φ1 and
φ2 are symmetric about c̄ (i.e., φ1(x) = φ2(2c̄ − x)).

Let q (φi ) = 〈∇φi , u〉 denote the projection of the gradient φi on L , where
i = 1, 2. Without loss of generality, assume

q (φ1)

⎧⎪⎨
⎪⎩

< 0,∀x ∈ (−∞, c1),

= 0,∀x = c1,

> 0,∀x ∈ (c1,+∞),

q (φ2)

⎧⎪⎨
⎪⎩

< 0,∀x ∈ (−∞, c2),

= 0,∀x = c2,

> 0,∀x ∈ (c2,+∞),

and c1 is on the left of c2 on L (i.e., c1 ∈ (−∞, c2); see Figure 7B), where ∞
denotes the infinity along the direction of L , and (·, ·) denotes a line segment
between two points (parentheses indicate exclusion of the end point; simi-
larly, braces indicate inclusion of the end point). Since by assumption, any
local minimum of h is located on L , to show that h has a unique minimum
at c̄, what is needed is to show

q (h) = q (φ1) + q (φ2)

⎧⎪⎨
⎪⎩

< 0,∀x ∈ [c1, c̄),

= 0,∀x = c̄,

> 0,∀x ∈ (c̄, c2],

for sufficiently close c1 and c2. According to the symmetry of φ1 and φ2, it is
needed only to prove the first line of the previous equation. The symmetry
of φ1 and φ2 about c̄ implies q (φ2(x)) = −q (φ1(2c̄ − x)). Then

q (h) = q (φ1(x)) − q (φ1(2c̄ − x)).

Since q (φ1) is equal to zero when x = c1 and greater than zero when
x ∈ (c1,+∞), there must exist c̃ ∈ (c1,∞) such that q (φ1(x)) monotoni-
cally increases when x moves from c1 to c̃ along L . Let c2 = c̃. Consider
x ∈ [c1, c̄). If c1, j < c2, j for some j = 1, . . . , m, where cs, j denotes the j th
component of cs , then c1, j ≤ xj < c̄ j < c2, j , which follows xj < 2c̄ j − xj =
c1, j + c2, j − xj ≤ c2, j . Similarly, if c1, j > c2, j for some j , we can deduce
xj > 2c̄ j − xj ≥ c2, j . Taken together, we have 2c̄ − x ∈ (x, c2] for x ∈ [c1, c̄).
It follows that q (h) < 0 for x ∈ [c1, c̄). Therefore, h is a pit function.

Step 3 (n inverted gaussian functions merge to one). It is easy to see
that if the sum of two pit functions of the same shape results in another pit
function, then adding a third pit function centered at the middle of their
centers, no matter whether it is the same shape, will also result in a pit
function.

Denote each pit function fi defined in equation A.1 by f (1)
i , correspond-

ing center by c(1)
i , the maximum interval between c(1)

i and c(1)
i+1 required to

make f (1)
i + f (1)

i+1 to be a pit function by θ (1), and the actual interval between
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c(1)
i and c(1)

i+1 by δ. Suppose that n is even. Let δ = θ (1). We can pair the
functions consecutively, sum respectively, and obtain n/2 pit functions, de-
noted by f (2)

i ’s with centers c(2)
i ’s. Denote the maximum interval between

c(2)
i and c(2)

i+1 required to make f (2)
i + f (2)

i+1 be a pit function by θ (2) (note that
any minimum of f (2)

i + f (2)
i+1 must be on L because it is actually the sum

of several f (1)
i ’s (see step 1). This merging effect can be ensured by letting

δ = min{θ (1), θ (2)/2}, because from the analysis in step 2, if an interval can
make two pit functions merge to another pit function, a smaller interval also
can. Suppose that n/2 is still even. We can pair the functions consecutively,
sum respectively, and obtain n/4 pit functions denoted by f (3)

i ’s with centers
c(3)

i ’s. Denote the maximum interval between c(3)
i and c(3)

i+1 required to make
f (3)
i + f (3)

i+1 to be a pit function by θ (3). If n/22, n/23, n/24, . . . are all even, then
repeating this process will result in a pit function located at the midpoint
of L , which is the sum of all f (1)

i ’s, by letting δ = min{θ (1), θ (2)/2, θ (3)/4, . . .}.
See Figure 7C (left).

If at any step k (started from 1), n/2(k−1) is odd, we can take away the
middle function and repeat the process as described above for the left
n/2(k−1) − 1 functions (see Figure 7C, right). The difference is that θ (k) re-
quired to make f (k)

i + f (k)
i+1 to be a pit function may vary across i , and the

smallest one should be recorded for calculating the required δ. In addition,
δ is no longer equal to θ (k)/2(k−1); nevertheless, it can be determined from
θ k . Repeat this process until only one function has resulted. By taking δ as
the minimum among the values calculated in all steps, the sum of all f (1)

i ’s
will result in a pit function centered at the midpoint of L . Note that n can
be very large and δ can be very small. The proof is completed.
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