

Abstract—We are concerned with solving the K-earliest

arrival problem on the timetable information-based public
transportation systems. The problem is like this: given a
departure time window at station A, find K best itineraries from
station A to station B in terms of the earliest arrival time at
station B. There are two typical models for the timetable
information, the time-expanded and the time-dependent models.
The K-earliest arrival problem can be solved on the
time-expanded model by using the classical K-shortest paths
algorithms for static networks. In this paper, we modified one of
these algorithms proposed by Martins and Santos and applied it
to the time-dependent model. The experimental results on the
Chinese railway system show that the modified algorithm is
nearly 3 times faster than its original version on the
time-expanded model.

Index Terms—timetable information, time-expanded model,
time-dependent model, K-earliest arrival itineraries.

I. INTRODUCTION
 typical problem in public transportation systems with
timetable schedules is to offer appropriate itineraries to

the passengers based on their preferences, such as earliest
arrival, minimum number of transfers and shortest travel time
and so on. The natural approach to solve these itinerary
problems is to transform the timetable information into an
appropriate graph, on which some shortest path algorithms
can be used to find the optimal itineraries. There are two main
approaches for modeling the timetable information: the
time-expanded ([1], [3], [4]) and the time-dependent
approaches ([1], [2], [3], [4], [5], [6]). The former approach
constructs a digraph in which every node corresponds to a
specific time event (departure or arrival) at a station and an
edge between nodes represents either a specific train running
from one station to the other or waiting within a station. The

Manuscript received December 12, 2011. This work was supported in part

by the National Natural Science Foundation of China under Grants
60805023, 90820305 and 61134012, National Basic Research Program (973
Program) of China under Grant 2007CB311003, Basic Research Foundation
of Tsinghua National Laboratory for Information Science and Technology
(TNList), and Research Foundation of the Easyway Company Limited.

Y. Yang and B. Xu are with the School of Information Technology, China
University of Geosciences, Beijing, 100083 China.

S. Wang, X. Hu, and J. Li are with the State Key Laboratory of Intelligent
Technology and Systems Tsinghua National Laboratory for Information
Science and Technology (TNList), Department of Computer Science and
Technology, Beijing, 100084 China (e-mail: xlhu@tsinghua.edu.cn).

latter approach constructs a digraph in which each station is
represented by a node and each train connection between two
stations is represented by an edge. A dynamic link cost is
assigned to each edge. The experimental results on
real-world data presented in [1] show that the time-expanded
approach turns out to be more robust for modeling more
complex scenarios, whereas the time-dependent approach
demonstrates better performance. Extended realistic
time-expanded and time-dependent models with transfers
between stations are discussed in [3].

However, so far, few researches have focused on solving
the K-shortest paths problem on timetable information-based
transportation systems. There are two classes of the shortest
paths ranking problem: the unconstrained problem and the
constrained problem. In the former no constraints are
imposed on the path definition ([8], [9], [10], [11], [12], [13],
[14], [17]), while in the latter the paths that satisfy specific
restricts can be considered ([15], [16]). In this paper, we are
concerned with the unconstrained problem. Two typical
algorithms for solving the unconstrained problem refer to the
Eppstein’s algorithm ([8]) and the Martins and Santos’
algorithm ([14], [17]). It is reported that the later outperforms
the former on real-world data [14].

 However, most of the K-shortest paths algorithm
including the Eppstein’s algorithm and the Martins and
Santos’ algorithm are designed purposely for static networks.
The time-expanded model for the timetable
information-based networks fits them well as its edge cost is
constant and nonnegative. But the computing speed might be
slow as a result of the large number of nodes and edges. It is
known that the time-dependent model has fewer nodes and
edges. If some K-shortest paths algorithm can be adapt to the
time-dependent model, then the efficiency might be
enhanced. In this paper, we explore this issue based on the
Martins and Santos’ algorithm (for short, MS algorithm
hereafter), which results in a K-earliest arrival itineraries
algorithm for the time-dependent model. The modified
algorithm is compared with the original MS algorithm on the
time-expanded model on real-world data. The experimental
results show that the former is nearly three times faster than
the latter.

The rest of the paper is organized as follows. Section II
presents the time-expanded model, the time-dependent model
and the original MS algorithm. Section III presents a
modified version of the MS algorithm for the time-dependent

A Modified K-Shortest Paths Algorithm for
Solving the Earliest Arrival Problem on the
Time-Dependent Model of Transportation

Systems
Yang Yang, Shuai Wang, Xiaolin Hu, Jianmin Li, and Bingji Xu

A

network. The experimental results are reported in section IV
and the conclusions are drawn in section V.

II. PRELIMINARIES
In this section the time-expanded model and the

time-dependent model for solving the earliest arrival problem
(EAP) are first reviewed. The details can be found in [1], [2],
and [3]. After that, an excellent K-shortest paths algorithm
for static networks, the MS algorithm is briefly reviewed.

A. The Time-Expanded Model
In the time-expanded digraph, every node corresponds to a

specific time event (departure or arrival) at a station. An edge
between nodes belonging to the same station represents either
transferring between trains inside a station (named transfer

edge) or waiting within a station (named stay edge), and an
edge between nodes belonging to different stations represents
either transferring between stations (named foot edge) or a
specific train running from one station to the other (named
train edge). The cost of an edge),(qp is pq tt − , where pt

and qt are the time values associated with nodes p and q,
respectively. The nodes and edges defined above are
illustrated in Fig. 1. Note that here we present the simplified
realistic version of the time-expanded model in [1] and take
into account the transfers between stations in [3].

Because the edge costs in the time-expanded model are
constant and nonnegative; the earliest arrival itinerary can be
computed by using the Dijkstra's algorithm [7].

B. The Time-Dependent Model
The time-dependent model is based on the train-route

digraph. A set of stations)0(,...,, 10 >kSSS k forms a train
route if one train departs from S0 and passes through the
consecutive stations kSS ,...,1 in turns. In the digraph each
station is associated with a station node, denoted by u, v,….
The train routes passing through the station u are represented
by route nodes, denoted by j

up , j=1, 2,…The model is
illustrated in Fig. 2. There are four types of edges: boarding
edge, dropping edge, route edge, and foot edge. The sets of
these edges are denoted by Β, D, R, and F, respectively. To
solve the EAP, the edge costs are defined as follow:
1) An edge Bpu i

u ∈),(has a dynamic cost specified by a

function),(i
upug : TT → such that)(

),(
tg i

upu is the time at

which i
up will be reached through the edge),(i

upu ,
given that u was reached at time t satisfying

u
transferpu tgt i

u
τ−≤)(),(, where u

transferτ is the constant

transfer time in the corresponding station. Clearly,
)(),(tg i

upu also denotes the departure time at i
up along the

route edge outgoing from i
up ;

2) An edge Dupi
u ∈),(is assigned 0 cost;

3) An edge Rpp j
v

i
u ∈),(has a dynamic cost specified by

a function),(j
v

i
u ppf : TT → such that)(),(tf j

v
i
u pp is the time

at which j
vp will be reached through the edge),(j

v
i
u pp ,

given that i
up was reached at time t.

4) An edge Fvu ∈),(is assigned a constant cost

),(vutransferτ which denotes the transfer time needed for
transferring from u to v.

An edge FDe U∈ is called a static edge. An edge
RBe U∈ is called a dynamic edge.

A modified Dijkstra's algorithm ([1], [5]) can be used to
solve the EAP on the time-dependent model if the following
assumption holds.
Assumption 1. Let u, v be any two station nodes and i

up

and j
vp be the corresponding route nodes such that

Rpp j
v

i
u ∈),(. If 1d , 2d are departure times from i

up and

1a , 2a are the respective arrival times to j
vp , then

2121 aadd ≤⇒≤ .

Fig.1. Illustration of the time-expanded model. Here, u, p, v, and q denote the
arrival nodes; m, n, s, and t denote the departure nodes; (u, v), (p, q), (m, v), and
(n, q) denote four train edges; (m, n) and (s, t) denote two stay edges; (u, n) and
(v, t) denote two transfer edges; and (u, t) denotes a foot edge.

1
up

2
up

1
vp

2
vp

)(11 , vu pp
f

)(22 , vu pp
f

0

0
0

0

),(1
upu

g
),(1

vpv
g

),(2
upu

g),(2
vpv

g

),(vutransferτ

),(uvtransferτ

Fig.2. Illustration of the time-dependent model. Here, u and v denote two

station nodes; j
up and j

vp denote the route nodes, j ∈ {1, 2,...};),(1
upu

denotes a boarding edge;),(1 upu denotes a dropping edge;),(11
vu pp

denotes a route edge; and (u, v) and (v, u) denote two foot edges.

This is not a strict assumption and it is easy to construct
such a time-dependent network for any timetable
information-based transportation systems. The correctness of
the algorithm follows from that the functions f and g have
nonnegative delays))(,)(,(ttgttft ≥≥∀ and that the
functions are nondecreasing.

C. A K-Shortest Paths Algorithm for Static Networks
We then briefly review the MS algorithm for ranking the

shortest paths on static networks (see [14] for details). The
algorithm constructs a sequence of growing graphs

KGGG ,...,, 21 such that the shortest path in kG is the k-th
shortest path in 1G , for Kk ≤≤1 . Given a static directed
graph),(111 EVG = , an origin-destination pair (s, t) and an
integer K, the MS algorithm for ranking the K-shortest paths
is presented in Table I, where the notations are defined as
follows:

},,,,,,,,{ 110 tvvvvvvsp rxxhhi ≡≡= −− KKK : the ith
shortest path from s to t;

),(kkk EVG = : the current graph, where k=1, 2, …, K;
)(kvx : kx Vkv ∈)(, where k=1, 2, …, K-1;

)(' kvx : the duplicate node of)(kvx , where k=1, 2, …, K-1;
'nt : the n-th duplicate node of t, where n=0, 1, …, K-1,

tt ≡'0 ;
)(1 kvx− : the tail node of the edge on path p whose head node

is)(kvx , where k=1, 2, …, K-1;

),(ji vvd : the cost of edge),(ji vv ;

vπ : the distance label of node v, i.e., the shortest distance
from s to v;

)(vI : the set of the incoming edges to v;
)(vT : the set of the tail nodes for edges belonging to)(vI .

III. THE K-EARLIEST ARRIVAL ITINERARIES ALGORITHMS
In the paper we are concerned with solving the K-earliest

arrival problem (K-EAP): given a departure time window at
station A, find K best itineraries from station A to station B in
terms of the earliest arrival time at station B. The MS
algorithm can be adapted for this purpose. In this section, we
first introduce some specifics in implementing the MS
algorithm on the time-expanded model for solving the
K-EAP, and then present a modified version for the
time-dependent model.

A. The K-Earliest Arrival Itineraries Algorithm on the
Time-Expanded Model
As the edge costs in the time-expanded model are constant

and nonnegative, the K-EAP on the time-expanded model
can be solved by using the MS algorithm directly. However,
due to the characteristics of the timetable information, some
specific tricks are required.

By using the algorithm to rank the earliest arrival
itineraries with given departure time window],[10 dd tt , there
is more than one origin node whose departure times are in

TABLE I
THE MS ALGORITHM

begin
determine a shortest tree in),(111 EVG = and let 1p be the shortest path from s to t in the shortest tree;
set k=1 and set 1pp = ;
while (there is an alternative to p) and (k<K) do:

begin
 determine)(kvh , the first node of p such that)1(hv has more than one incoming edge; (A)

 if kh Vkv ∉′)(
 begin
 add)(kvh

′ to kV ;

 update))1((hvI as))}1(),({())1((1 hhh vkvvI −− and))1((hvT as)}({))1((1 kvvT hh −− ; (B)

set))}1(())1(,(|))1(,(min{)(' hhhvkv vIvvvvd
h

∈+= ππ ; (C)

 let)()(1 kvkv hi += ;
 end
 else let)(kvi be the first node on p after)(kvh such that ki Vkv ∉′)(;
 endif
 for each },),({)()1(′−∈ k

ij tkvkv K do

 begin
 add)(' kv j to kV ;

 update))1((jvI as))}1(),({())}1(),({())1((1
'

1 jjjjj vkvvkvvI −− −U

 and))1((jvT as)}({)}({))1((1
'

1 kvkvvT jjj −− −U ; (D)

 set))}1(())1(,(|))1(,(min{)(' jjjvkv vIvvvvd
j

∈+= ππ ; (E)

 end
 obtain a new graph),(111 +++ = kkk EVG ;

 let p be the shortest path from s to kt in 1+kG ;
 set k=k+1;

end
end

],[10 dd tt , as well as more than one target node. Let S denote
the set of all the origin nodes and T denote the set of all the
target nodes. Two virtual nodes are added to the digraph:
virtual origin node S~ and virtual target node T~ , which are
connected to the origin nodes and the target nodes,
respectively. S~ has outgoing edges only, denoted by),~(sS ,

and the cost of the edge is 0ds tt − , for each Ss ∈ . T~ has

incoming edges only, denoted by)~,(Tt , and the cost of the
edge is 0, for each Tt ∈ . Then the problem is transformed to
find the K-earliest arrival itineraries from S~ to T~ and the
MS algorithm can be applied now.

B. The K-Earliest Arrival Itineraries Algorithm on the
Time-Dependent Model
As there exist dynamic edges on the time-dependent model,

the MS algorithm cannot be applied directly. In the following,
we modified the algorithm for the time-dependent model.

Let ne denote the n-th elementary connection of a dynamic
edge,)(nd et the departure time of ne and)(na et the
arrival time of ne . Let)(xva denote the earliest arrival time
label at node xv .

The fundamental process of the modified algorithm is the
same as that of the original MS algorithm. But because there
are two types of dynamic edges, the route edges and the
boarding edges, some steps need to be modified
appropriately. First of all, the definition of the in-degree of a
node is different from that in static networks. Second, when
updating the incoming edges as well as the predecessor nodes
of the node, which is in the given network and corresponds to
the head node of a route edge on the current path, we remove
the route edge and its tail node completely, as if the route
edge was a static edge. Third, when updating the incoming
edges of the node, which is in the given network and
corresponds to the head node of a boarding edge on the
current path, we remove part of the elementary connections
of the boarding edge only: the specific elementary connection
on the path and the other elementary connections whose
arrival time is earlier than its arrival time. When updating the
predecessor nodes of the node, we do not remove the tail
node of the boarding edge unless all of the elementary
connections of the edge have been removed. In addition, the
algorithm to compute the earliest arrival time label of a node
is different from the original MS algorithm. Specifically, the
steps (A), (B), (C), (D), and (E) in the original MS algorithm
(see Table I) should be modified as follows.
Step (A)

In calculating the in-degree of a head node of a boarding
edge, the boarding edge corresponds to n degrees, where n
stands for the number of the elementary connections of the
edge. While in calculating the in-degree of a head node of a
route edge, the route edge corresponds to 1 degree, as if the
route edge was a static edge.
Step (B)

If Rvkv hh ∈−))1(),((1 ,))1((hvI is updated as
))}1(),({())1((1 hhh vkvvI −− and))1((hvT is updated as

)}({))1((1 kvvT hh −− , the same as that in the original
algorithm.

If Bvkv hh ∈−))1(),((1 , different to the original MS
algorithm, we first remove the elementary connection ie on

))1(),((1 hh vkv − , where))(()(kvaet hia ≤ , and
leave))1((hvI and))1((hvT as they are unless all of the
elementary connections of))1(),((1 hh vkv − have been
removed. If that happens,))1((hvI is updated as

))}1(),({(-))1((1 hhh vkvvI − , (1)
and))1((hvT is updated as

)}({))1((1 kvvT hh −− . (2)
If))1(),((1 hh vkv − is not a dynamic edge, this step is the

same as that in the original algorithm.
Step (C)

The modified Dijkstra’s algorithm in [1] and [5] is used to
compute the earliest arrival time at)(' kvh . If)(kvh is a route
node, set

))}.1(())1(),(()),1(),((
)),(()(|)(min{))(('

hhxhxi
xidiah

vIvkvvkve
kvaetetkva

∈∈
≥= (3)

Otherwise,

))}.1(())1(),((
|))1(),(())((min{))(('

hhx
hxxh

vIvkv
vkvdkvakva

∈
+= (4)

Step (D)
If Rvkv jj ∈−))1(),((1 ,))1((jvI is updated as

))}1(),({())}1(),({())1((1
'

1 jjjjj vkvvkvvI −− −U , (5)
and))1((jvT is updated as

)}({)}({))1((1
'

1 kvkvvT jjj −− −U . (6)
If Bvkv jj ∈−))1(),((1 , two cases need to be considered:

))1(),(('
1 jj vkv − exists in the current graph and

))1(),(('
1 jj vkv − does not exist. In the former case, first, we

replace the cost function of the edge))1(),(('
1 jj vkv − with that

of))1(),((1 jj vkv − . Second, we remove the elementary
connection ie on))1(),((1 jj vkv − , where))(()(kvaet jia ≤ .
If all of the elementary connections of))1(),((1 jj vkv − have
been removed, then update))1((jvI as

(1))}),({(-))1((1 jjj vkvvI − , (7)
and))1((jvT as

)}({))1((1 kvvT jj −− . (8)
In the latter case, first, we update))1((jvI as

))}1(),({())1(('
1 jjj vkvvI −U , (9)

and))1((jvT as

)}({))1(('
1 kvvT jj −U . (10)

Second, we remove the elementary connection ie on
))1(),((1 jj vkv − , where))(()(kvaet jia ≤ . If all of the

elementary connections of))1(),((1 jj vkv − have been
removed, then update))1((jvI as

(1))}),({(-))}1(),({())1((1
'

1 jjjjj vkvvkvvI −−U , (11)
and))1((jvT as

)}({)}({))1((1
'

1 kvkvvT jjj −− −U . (12)
If))1(),((1 jj vkv − is not a dynamic edge, this step is the

same as that in the original algorithm.
Step (E)

The modified Dijkstra’s algorithm in [1] and [5] is used to
compute the label of the node)(' kv j . If)(kv j is a route
node, set:

))}.1(())1(),(()),1(),((
)),(()(|)(min{))(('

jjxjxi

xidiaj
vIvkvvkve

kvaetetkva
∈∈

≥= (13)

Otherwise,

))}.1(())1(),((
|))1(),(())((min{))(('

jjx

jxxj
vIvkv

vkvdkvakva
∈

+= (14)

It is easy to see that the modifications presented above do
not affect the correctness of the MS algorithm. Then we have
the following theorem.
Theorem 1. If Assumption 1 holds, then the paths determined
by using the algorithm presented above on the
time-dependent model are the K-earliest arrival itineraries.

IV. EXPERIMENTS
In this section we compare the efficiencies of the two

K-earliest arrival itineraries algorithms with real-world data
of the Chinese railway system.

A. Data
We have used the timetable information of the Chinese

railway system to generate the time-expanded and the
time-dependent digraphs. The data is available from Feb. 23

to Mar. 16 of 2011. Not all the trains operate daily. Table II
summarizes the characteristics of the graphs.

For detailed comparison, we divide the stations into large
stations and small stations. A station is called a large station
if on average over 50 trains pass through it every day;
otherwise, it is called a small station. According to this
criterion, there are 185 large stations and 2791 small stations.
The queries are divided into five types, which are defined as
follow：
1) L2L: from large station to large station;
2) L2S: from large station to small station;
3) S2L: from small station to large station;
4) S2S: from small station to small station;
5) Random: from any station to any station;
Each query consists of a departure station, an arrival station,
the earliest departure time and the last departure time.

B. Experimental Setup
The algorithms are implemented in C++ and conducted on

a server with Intel (R) Xeon (R) E5320 processor at 1.86GHz
and 4GB of memory running Linux (kernel version 2.6.32).

For each query, for speeding up the algorithms, on any
model we only label the nodes within 5 days after the earliest

80

84

88

92

96

100

0 20 40 60 80 100K

tim
e(

m
s)

L2L L2S

 (a)

70

74

78

82

86

90

0 20 40 60 80 100K

tim
e(

m
s)

S2S S2L

 (b)
Fig. 3. Execution time of the MS algorithm on the time-expanded model for
the (a) L2L, L2S and (b) S2S, S2L queries.

20

24

28

32

36

40

0 20 40 60 80 100K

tim
e(

m
s)

L2L L2S

 (a)

20

24

28

32

36

40

0 20 40 60 80 100K

tim
e(

m
s)

S2S S2L

 (b)
Fig. 4. Execution time of the revised MS algorithm on the time-dependent
model for the (a) L2L, L2S and (b) S2S, S2L queries.

TABLE II
THE CHARACTERISTICS OF THE TWO MODELS

Model Nodes Edges

Average Number
of Elementary

Connections per
Dynamic Edge

Time-Expanded 1544804 2663287 --
Time-Dependent 44461 99913 20.21

departure time. It will not affect the final results since our
experimental results showed that the K-th earliest arrival
itinerary never exceeded this period even for K=100.

C. Results
The five types of queries mentioned above are used to test

the two algorithms, and each type includes 400 queries, for K
= 1, 10, 20, …, 100, respectively.

Fig. 3 shows the execution time on the time-expanded
model in responding to the queries of type L2L, L2S, S2S and
S2L. First of all, Fig. 3(a) shows that the speed of the MS
algorithm for the queries of type L2L is nearly the same as
that for the queries of type L2S. Fig. 3(b) shows that the
speed of the algorithm for the queries of type S2L is nearly
the same as that for the queries of type S2S. By comparing
Fig. 3(a) and Fig. 3(b), we can see that the MS algorithm for
the queries departing from small stations runs faster than that
for the queries departing from large stations. It is due to the
fact that the departure nodes at a small station are usually
fewer than those at a large station.

Fig. 4 shows the execution time of revised MS algorithm
on the time-dependent model for the queries of type L2L,
L2S, S2S and S2L. It is seen that the efficiency of the
algorithm is very robust and the execution time for all types
of queries are nearly the same.

From Fig. 3 (a) and Fig. 4(a), it is seen that the algorithm
for the query types L2L and L2S on the time-dependent
network is 3.3 times faster than that on the time-expanded
network on average. From Fig. 3(b) with Fig. 4(b), it is seen
that the algorithm for the query types S2S and S2L on the
time-dependent network is 2.8 times faster than that on the
time-expanded network on average.

Fig. 5 compares the execution time of the algorithms on
the two models for the “Random” queries. It is seen that, for
any model, the execution time for 1000 ≤< K is nearly the
same as that for K=1. This result suggests the high efficiency
of the MS algorithm. In addition, the modified K-earliest
arrival itineraries algorithm on the time-dependent model is
3.1 times faster than the original MS algorithm on the
time-expanded model on average.

V. CONCLUSIONS
To solve the K-earliest arrival problem for the timetable

information-based transportation system, we modified an
excellent K-shortest paths algorithm proposed by Martins
and Santos for the time-dependent model. The experimental
results on Chinese railway system show that the modified
algorithm is nearly 3 times faster than the original algorithm
on the time-expanded model.

 Theoretically, both of the algorithms can be guaranteed to
find the K-earliest arrival itineraries. However, neither
algorithm can guarantee that all of the itineraries found are
reasonable in reality due to the intrinsic deficiency of the
time-expanded and time-dependent models. For example, an
itinerary found by the algorithms may pass through a station
twice though at different time. In the next step, we plan to
integrate the rationality check of the results into the
algorithms.

REFERENCES
[1] E. Pyrga, F. Schulz, D. Wagner and C. Zaroliagis, “Efficient models for

timetable information in public transportation systems,” Journal of
Experimental Algorithmics, vol.12, pp. 1-39, 2008.

[2] E. Pyrga, F. Schulz, D. Wagner and C. Zaroliagis, “Towards realistic
modeling of time-table information through the time-dependent
approach,” in Electronic Notes in Theoretical Computer Science:
Proceeding of ATMOS Workshop 2003, pp. 85-103.

[3] M. Müller-Hannemann, F. Schulz, D. Wagner and C. Zaroliagis,
“Timetable information: models and algorithms,” Algorithmic Methods
for Railway Optimization, vol. 4359, pp. 67-90, 2007.

[4] D. Delling, K. Giannakopoulou, D. Wagner and C. Zaroliagis,
“Timetable information updating in case of delays: modeling issues,”
Technical Report 133, Arrival Technical Report, 2008.

[5] G. Stolting Brodal and R. Jacob, “Time-dependent networks as models
to achieve fast exact time-table queries,” in Electronic Notes in
Theoretical Computer Science: Proceeding of ATMOS Workshop 2003,
2004, pp. 3-15.

[6] A. Orda and R. Rom, “Shortest-path and minimum-delay algorithms in
networks with time-dependent edge-length,” Journal of the ACM, vol.
37, no. 3, pp. 607-625, 1990.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

[8] D. Eppstein, “Finding the K shortest paths,” SIAM Journal on
Computing, vol. 28, no. 2, pp. 652-673, 1998.

[9] E. Q. V. Martins, M. M. B. Pascoal and J. L. E. Santos, “Deviation
algorithms for ranking shortest paths,” International Journal of
Foundations of Computer Science, vol. 10, no. 3, pp. 247-262, 1999.

[10] E. Q. V. Martins, V. Martins, et al, “The optimal path problem,”
Investigacao Operacional, vol. 19, pp. 43-60,1999.

[11] E. Q. V. Martins, E. Queir, et al. (1999). Labeling algorithms for
ranking shortest paths. Technical Report, CISUC. [Online]. Available:
http://www.mat.uc.pt~/marta/ Publicacoes/ labeling. ps. gz.

[12] V. M. Jiménez and A. Marzal, “Computing the K shortest paths: a new
algorithm and an experimental comparison,” Algorithm Engineering,
vol. 1668, pp. 15-29, 1999.

[13] V. M. Jiménez and A. Marzal, “A lazy version of Eppstein’s K shortest
paths algorithm,” Experimental and Efficient Algorithms, vol. 2647, pp.
179-191, 2003.

[14] E. Q. V. Martins, J. L. E. Santos, et al, “A new shortest paths ranking
algorithm,” Investigacao Operacional, vol. 20, no. 1, pp. 47-62, 1999.

[15] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712-716, 1971.

[16] E. Q. V. Martins and M. M. B. Pascoal, “A new implementation of
Yen’s ranking loopless paths algorithm,” 4OR: A Quarterly Journal of
Operations Research, vol. 1, no. 2, pp. 121-133, 2003.

[17] J. A. Azevedo, J. J. E. R. S. Madeira, E. Q. V. Martins and F. M. A.
Pires, “A shortest paths ranking algorithm,” in Proceedings of the
Annual Conference AIRO’90, Sorrento, 1990, pp. 1001-1011.

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100K

tim
e(

m
s)

time-expanded time-dependent

Fig. 5. Execution time of the two algorithms for the “Random” queries.

