
 

  
Abstract—We are concerned with solving the K-earliest 

arrival problem on the timetable information-based public 
transportation systems. The problem is like this: given a 
departure time window at station A, find K best itineraries from 
station A to station B in terms of the earliest arrival time at 
station B. There are two typical models for the timetable 
information, the time-expanded and the time-dependent models. 
The K-earliest arrival problem can be solved on the 
time-expanded model by using the classical K-shortest paths 
algorithms for static networks. In this paper, we modified one of 
these algorithms proposed by Martins and Santos and applied it 
to the time-dependent model. The experimental results on the 
Chinese railway system show that the modified algorithm is 
nearly 3 times faster than its original version on the 
time-expanded model. 
 

Index Terms—timetable information, time-expanded model, 
time-dependent model, K-earliest arrival itineraries. 
 

I. INTRODUCTION 
 typical problem in public transportation systems with 
timetable schedules is to offer appropriate itineraries to 

the passengers based on  their  preferences, such as earliest 
arrival, minimum number of transfers and shortest travel time 
and so on. The natural approach to solve these itinerary 
problems is to transform the timetable information into an 
appropriate graph, on which some shortest path algorithms 
can be used to find the optimal itineraries. There are two main 
approaches for modeling the timetable information: the 
time-expanded ([1], [3], [4]) and the time-dependent 
approaches ([1], [2], [3], [4], [5], [6]). The former approach 
constructs a digraph in which every node corresponds to a 
specific time event (departure or arrival) at a station and an 
edge between nodes represents either a specific train running 
from one station to the other or waiting within a station. The 
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latter approach constructs a digraph in which each station is 
represented by a node and each train connection between two 
stations is represented by an edge. A dynamic link cost is 
assigned to each edge. The experimental results on 
real-world data presented in [1] show that the time-expanded 
approach turns out to be more robust for modeling more 
complex scenarios, whereas the time-dependent approach 
demonstrates better performance. Extended realistic 
time-expanded and time-dependent models with transfers 
between stations are discussed in [3]. 

However, so far, few researches have focused on solving 
the K-shortest paths problem on timetable information-based 
transportation systems. There are two classes of the shortest 
paths ranking problem: the unconstrained problem and the 
constrained problem. In the former no constraints are 
imposed on the path definition ([8], [9], [10], [11], [12], [13], 
[14], [17]), while in the latter the paths that satisfy specific 
restricts can be considered ([15], [16]). In this paper, we are 
concerned with the unconstrained problem. Two typical 
algorithms for solving the unconstrained problem refer to the 
Eppstein’s algorithm ([8]) and the Martins and Santos’ 
algorithm ([14], [17]). It is reported that the later outperforms 
the former on real-world data [14]. 

  However, most of the K-shortest paths algorithm 
including the Eppstein’s algorithm and the Martins and 
Santos’ algorithm are designed purposely for static networks. 
The time-expanded model for the timetable 
information-based networks fits them well as its edge cost is 
constant and nonnegative. But the computing speed might be 
slow as a result of the large number of nodes and edges. It is 
known that the time-dependent model has fewer nodes and 
edges. If some K-shortest paths algorithm can be adapt to the 
time-dependent model, then the efficiency might be 
enhanced. In this paper, we explore this issue based on the 
Martins and Santos’ algorithm (for short, MS algorithm 
hereafter), which results in a K-earliest arrival itineraries 
algorithm for the time-dependent model. The modified 
algorithm is compared with the original MS algorithm on the 
time-expanded model on real-world data. The experimental 
results show that the former is nearly three times faster than 
the latter.  

The rest of the paper is organized as follows. Section II 
presents the time-expanded model, the time-dependent model 
and the original MS algorithm. Section III presents a 
modified version of the MS algorithm for the time-dependent 
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network. The experimental results are reported in section IV 
and the conclusions are drawn in section V. 

 

II. PRELIMINARIES 
In this section the time-expanded model and the 

time-dependent model for solving the earliest arrival problem 
(EAP) are first reviewed. The details can be found in [1], [2], 
and [3]. After that, an excellent K-shortest paths algorithm 
for static networks, the MS algorithm is briefly reviewed.  

A. The Time-Expanded Model 
In the time-expanded digraph, every node corresponds to a 

specific time event (departure or arrival) at a station. An edge 
between nodes belonging to the same station represents either 
transferring between trains inside a station (named transfer 

edge) or waiting within a station (named stay edge), and an 
edge between nodes belonging to different stations represents 
either transferring between stations (named foot edge) or a 
specific train running from one station to the other (named 
train edge). The cost of an edge ),( qp is pq tt − , where pt  

and qt  are the time values associated with nodes p and q, 
respectively. The nodes and edges defined above are 
illustrated in Fig. 1. Note that here we present the simplified 
realistic version of the time-expanded model in [1] and take 
into account the transfers between stations in [3]. 

Because the edge costs in the time-expanded model are 
constant and nonnegative; the earliest arrival itinerary can be 
computed by using the Dijkstra's algorithm [7]. 

B. The Time-Dependent Model 
The time-dependent model is based on the train-route 

digraph. A set of stations )0(,...,, 10 >kSSS k forms a train 
route if one train departs from S0 and passes through the 
consecutive stations kSS ,...,1  in turns. In the digraph each 
station is associated with a station node, denoted by u, v,…. 
The train routes passing through the station u are represented 
by route nodes, denoted by j

up , j=1, 2,…The model is 
illustrated in Fig. 2. There are four types of edges: boarding 
edge, dropping edge, route edge, and foot edge. The sets of 
these edges are denoted by Β, D, R,  and F, respectively. To 
solve the EAP, the edge costs are defined as follow:  
1) An edge Bpu i

u ∈),(  has a dynamic cost specified by a 

function ),( i
upug : TT → such that )(

),(
tg i

upu  is the time at 

which i
up will be reached through the edge ),( i

upu , 
given that u was reached at time t satisfying 

u
transferpu tgt i

u
τ−≤ )(),( , where u

transferτ  is the constant 

transfer time in the corresponding station. Clearly, 
)(),( tg i

upu  also denotes the departure time at i
up along the 

route edge outgoing from i
up ; 

2) An edge Dupi
u ∈),(  is assigned 0 cost; 

3) An edge Rpp j
v

i
u ∈),(  has a dynamic cost specified by 

a function ),( j
v

i
u ppf : TT → such that )(),( tf j

v
i
u pp  is the time 

at which j
vp will be reached through the edge ),( j

v
i
u pp , 

given that i
up was reached at time t. 

4) An edge Fvu ∈),(  is assigned a constant cost 

),( vutransferτ which denotes the transfer time needed for 
transferring from u to v. 

An edge FDe U∈ is called a static edge. An edge 
RBe U∈ is called a dynamic edge.  

A modified Dijkstra's algorithm ([1], [5]) can be used to 
solve the EAP on the time-dependent model if the following 
assumption holds.  
Assumption 1. Let u, v be any two station nodes and i

up  

and j
vp  be the corresponding route nodes such that 

Rpp j
v

i
u ∈),( . If 1d , 2d are departure times from i

up  and 

1a , 2a are the respective arrival times to j
vp , then 

2121 aadd ≤⇒≤ . 

Fig.1. Illustration of the time-expanded model. Here, u, p, v, and q denote the 
arrival nodes; m, n, s, and t denote the departure nodes; (u, v), (p, q), (m, v), and 
(n, q) denote four train edges; (m, n) and (s, t) denote two stay edges; (u, n) and 
(v, t) denote two transfer edges; and (u, t) denotes a foot edge. 
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Fig.2. Illustration of the time-dependent model. Here, u and v denote two 
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This is not a strict assumption and it is easy to construct 
such a time-dependent network for any timetable 
information-based transportation systems. The correctness of 
the algorithm follows from that the functions f and g have 
nonnegative delays ))(,)(,( ttgttft ≥≥∀  and that the 
functions are nondecreasing. 

C. A K-Shortest Paths Algorithm for Static Networks 
We then briefly review the MS algorithm for ranking the 

shortest paths on static networks (see [14] for details). The 
algorithm constructs a sequence of growing graphs 

KGGG ,...,, 21  such that the shortest path in kG is the k-th 
shortest path in 1G , for Kk ≤≤1 . Given a static directed 
graph ),( 111 EVG =  , an origin-destination pair (s, t) and an 
integer K,  the MS algorithm for ranking the K-shortest paths 
is presented in Table I, where the notations are defined as 
follows: 

},,,,,,,,{ 110 tvvvvvvsp rxxhhi ≡≡= −− KKK : the ith 
shortest path from s to t; 

),( kkk EVG = : the current graph, where k=1, 2, …, K; 
)(kvx : kx Vkv ∈)( , where k=1, 2, …, K-1; 

)(' kvx : the duplicate node of )(kvx , where k=1, 2, …, K-1; 
'nt : the n-th duplicate node of t, where n=0, 1, …, K-1, 

tt ≡'0 ; 
)(1 kvx− : the tail node of the edge on path p whose head node 

is )(kvx , where k=1, 2, …, K-1; 

),( ji vvd : the cost of edge ),( ji vv ; 

vπ : the distance label of  node v, i.e., the shortest distance 
from s to v; 

)(vI : the set of the incoming edges to v;  
)(vT :  the set of the tail nodes for edges belonging to )(vI . 

 

III. THE K-EARLIEST ARRIVAL ITINERARIES ALGORITHMS 
In the paper we are concerned with solving the K-earliest 

arrival problem (K-EAP): given a departure time window at 
station A, find K best itineraries from station A to station B in 
terms of the earliest arrival time at station B. The MS 
algorithm can be adapted for this purpose. In this section, we 
first introduce some specifics in implementing the MS 
algorithm on the time-expanded model for solving the 
K-EAP, and then present a modified version for the 
time-dependent model.  

A. The K-Earliest Arrival Itineraries Algorithm on the 
Time-Expanded Model  
As the edge costs in the time-expanded model are constant 

and nonnegative, the K-EAP on the time-expanded model 
can be solved by using the MS algorithm directly. However, 
due to the characteristics of the timetable information, some 
specific tricks are required. 

By using the algorithm to rank the earliest arrival 
itineraries with given departure time window ],[ 10 dd tt , there 
is more than one origin node whose departure times are in 

TABLE I 
THE MS ALGORITHM 

begin 
determine a shortest tree in ),( 111 EVG =  and let 1p  be the shortest path from s to t in the shortest tree; 
set k=1 and set 1pp = ; 
while (there is an alternative to p) and (k<K) do: 

begin 
               determine )(kvh , the first node of p such that )1(hv  has more than one incoming edge;                                                             (A)

               if kh Vkv ∉′ )(  
                    begin 
                           add )(kvh

′  to kV ; 

                           update ))1(( hvI  as ))}1(),({())1(( 1 hhh vkvvI −−  and ))1(( hvT  as )}({))1(( 1 kvvT hh −− ;                                              (B)

set ))}1(())1(,(|))1(,(min{)(' hhhvkv vIvvvvd
h

∈+= ππ ;                                                                                                  (C)

                            let )()( 1 kvkv hi += ; 
                     end 
               else let )(kvi  be the first node on p after )(kvh  such that ki Vkv ∉′ )( ; 
               endif 
               for each },),({)( )1( ′−∈ k

ij tkvkv K  do 

                     begin 
                           add )(' kv j  to kV ; 

                           update ))1(( jvI  as ))}1(),({())}1(),({())1(( 1
'

1 jjjjj vkvvkvvI −− −U           

                               and  ))1(( jvT  as )}({)}({))1(( 1
'

1 kvkvvT jjj −− −U ;                                                                                               (D)

                             set ))}1(())1(,(|))1(,(min{)(' jjjvkv vIvvvvd
j

∈+= ππ ;                                                                                                  (E)

                      end 
               obtain a new graph ),( 111 +++ = kkk EVG ; 

                 let p be the shortest path from s to kt  in 1+kG ; 
                 set k=k+1; 

end 
end 

 



 

],[ 10 dd tt , as well as more than one target node. Let S denote 
the set of all the origin nodes and T denote the set of all the 
target nodes. Two virtual nodes are added to the digraph: 
virtual origin node S~  and virtual target node T~ , which are 
connected to the origin nodes and the target nodes, 
respectively. S~  has outgoing edges only, denoted by ),~( sS , 

and the cost of the edge is 0ds tt − , for each Ss ∈ . T~  has 

incoming edges only, denoted by )~,( Tt , and the cost of the 
edge is 0, for each Tt ∈ . Then the problem is transformed to 
find the K-earliest arrival itineraries from S~ to T~  and the 
MS algorithm can be applied now. 

B. The K-Earliest Arrival Itineraries Algorithm on the 
Time-Dependent Model 
As there exist dynamic edges on the time-dependent model, 

the MS algorithm cannot be applied directly. In the following, 
we modified the algorithm for the time-dependent model. 

Let ne denote the n-th elementary connection of a dynamic 
edge, )( nd et  the departure time of ne  and )( na et  the 
arrival time of ne . Let )( xva  denote the earliest arrival time 
label at node xv . 

The fundamental process of the modified algorithm is the 
same as that of the original MS algorithm. But because there 
are two types of dynamic edges, the route edges and the 
boarding edges, some steps need to be modified 
appropriately. First of all, the definition of the in-degree of a 
node is different from that in static networks. Second, when 
updating the incoming edges as well as the predecessor nodes 
of the node, which is in the given network and corresponds to 
the head node of a route edge on the current path, we remove 
the route edge and its tail node completely, as if the route 
edge was a static edge. Third, when updating the incoming 
edges of the node, which is in the given network and 
corresponds to the head node of a boarding edge on the 
current path, we remove part of the elementary connections 
of the boarding edge only: the specific elementary connection 
on the path and the other elementary connections whose 
arrival time is earlier than its arrival time. When updating the 
predecessor nodes of the node, we do not remove the tail 
node of the boarding edge unless all of the elementary 
connections of the edge have been removed. In addition, the 
algorithm to compute the earliest arrival time label of a node 
is different from the original MS algorithm. Specifically, the 
steps (A), (B), (C), (D), and (E) in the original MS algorithm 
(see Table I) should be modified as follows. 
Step (A) 

In calculating the in-degree of a head node of a boarding 
edge, the boarding edge corresponds to n degrees, where n 
stands for the number of the elementary connections of the 
edge. While in calculating the in-degree of a head node of a 
route edge, the route edge corresponds to 1 degree, as if the 
route edge was a static edge. 
Step (B) 

If Rvkv hh ∈− ))1(),(( 1 , ))1(( hvI  is updated as 
))}1(),({())1(( 1 hhh vkvvI −−  and ))1(( hvT  is updated as 

)}({))1(( 1 kvvT hh −− , the same as that in the original 
algorithm. 

If Bvkv hh ∈− ))1(),(( 1 , different to the original MS 
algorithm, we first remove the elementary connection ie  on 

))1(),(( 1 hh vkv − , where ))(()( kvaet hia ≤ , and 
leave ))1(( hvI  and  ))1(( hvT  as they are unless all of the 
elementary connections of ))1(),(( 1 hh vkv −  have been 
removed. If that happens, ))1(( hvI  is updated as 

))}1(),({(-))1(( 1 hhh vkvvI − ,                  (1) 
and ))1(( hvT  is updated as 

 )}({))1(( 1 kvvT hh −− .                       (2) 
If ))1(),(( 1 hh vkv − is not a dynamic edge, this step is the 

same as that in the original algorithm. 
Step (C)  

The modified Dijkstra’s algorithm in [1] and [5] is used to 
compute the earliest arrival time at )(' kvh . If )(kvh  is a route 
node, set 

))}.1(())1(),(()),1(),((
)),(()(|)(min{))(( '

hhxhxi
xidiah

vIvkvvkve
kvaetetkva

∈∈
≥=     (3) 

Otherwise,  

))}.1(())1(),((
|))1(),(())((min{))(( '

hhx
hxxh

vIvkv
vkvdkvakva

∈
+=     (4) 

Step (D) 
If Rvkv jj ∈− ))1(),(( 1 , ))1(( jvI  is updated as  

))}1(),({())}1(),({())1(( 1
'

1 jjjjj vkvvkvvI −− −U ,     (5) 
and ))1(( jvT  is updated as  

)}({)}({))1(( 1
'

1 kvkvvT jjj −− −U .                 (6) 
If Bvkv jj ∈− ))1(),(( 1 , two cases need to be considered: 

))1(),(( '
1 jj vkv −  exists in the current graph and 

))1(),(( '
1 jj vkv −  does not exist. In the former case, first, we 

replace the cost function of the edge ))1(),(( '
1 jj vkv − with that 

of ))1(),(( 1 jj vkv − . Second, we remove the elementary 
connection ie  on ))1(),(( 1 jj vkv − , where ))(()( kvaet jia ≤ . 
If all of the elementary connections of ))1(),(( 1 jj vkv −  have 
been removed, then update ))1(( jvI  as  

(1))}),({(-))1(( 1 jjj vkvvI − ,                     (7) 
and ))1(( jvT  as 

)}({))1(( 1 kvvT jj −− .                           (8) 
In the latter case, first, we update ))1(( jvI  as 

))}1(),({())1(( '
1 jjj vkvvI −U ,                     (9) 

and  ))1(( jvT  as 

)}({))1(( '
1 kvvT jj −U .                           (10) 

Second, we remove the elementary connection ie  on 
))1(),(( 1 jj vkv − , where ))(()( kvaet jia ≤ . If all of the 

elementary connections of ))1(),(( 1 jj vkv −  have been 
removed, then update ))1(( jvI  as 

(1))}),({(-))}1(),({())1(( 1
'

1 jjjjj vkvvkvvI −−U ,     (11) 
and ))1(( jvT  as 



 

)}({)}({))1(( 1
'

1 kvkvvT jjj −− −U .                (12) 
If ))1(),(( 1 jj vkv − is not a dynamic edge, this step is the 

same as that in the original algorithm. 
Step (E) 

The modified Dijkstra’s algorithm in [1] and [5] is used to 
compute the label of the node )(' kv j . If )(kv j  is a route 
node, set: 

    ))}.1(())1(),(()),1(),((
)),(()(|)(min{))(( '

jjxjxi

xidiaj
vIvkvvkve

kvaetetkva
∈∈

≥=   (13) 

Otherwise,  

))}.1(())1(),((
|))1(),(())((min{))(( '

jjx

jxxj
vIvkv

vkvdkvakva
∈

+=        (14) 

It is easy to see that the modifications presented above do 
not affect the correctness of the MS algorithm. Then we have 
the following theorem.  
Theorem 1. If Assumption 1 holds, then the paths determined 
by using the algorithm presented above on the 
time-dependent model are the K-earliest arrival itineraries. 
 

IV. EXPERIMENTS 
In this section we compare the efficiencies of the two 

K-earliest arrival itineraries algorithms with real-world data 
of the Chinese railway system.  

A. Data  
We have used the timetable information of the Chinese 

railway system to generate the time-expanded and the 
time-dependent digraphs. The data is available from Feb. 23 

to Mar. 16 of 2011. Not all the trains operate daily. Table II 
summarizes the characteristics of the graphs. 

For detailed comparison, we divide the stations into large 
stations and small stations. A station is called a large station 
if on average over 50 trains pass through it every day; 
otherwise, it is called a small station. According to this 
criterion, there are 185 large stations and 2791 small stations. 
The queries are divided into five types, which are defined as 
follow：  
1) L2L: from large station to large station; 
2) L2S: from large station to small station;  
3) S2L: from small station to large station; 
4) S2S: from small station to small station;  
5) Random: from any station to any station; 
Each query consists of a departure station, an arrival station, 
the earliest departure time and the last departure time. 

B. Experimental Setup  
The algorithms are implemented in C++ and conducted on 

a server with Intel (R) Xeon (R) E5320 processor at 1.86GHz 
and 4GB of memory running Linux (kernel version 2.6.32). 

For each query, for speeding up the algorithms, on any 
model we only label the nodes within 5 days after the earliest 
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Fig. 3. Execution time of the  MS algorithm on the time-expanded model for
the  (a) L2L, L2S and (b) S2S, S2L queries. 
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Fig. 4. Execution time of the revised MS algorithm on the time-dependent 
model for the  (a) L2L, L2S and (b) S2S, S2L queries. 

TABLE II 
THE CHARACTERISTICS OF THE TWO MODELS  

Model Nodes Edges 

Average Number 
of Elementary 

Connections per 
Dynamic Edge 

Time-Expanded 1544804 2663287 -- 
Time-Dependent 44461 99913 20.21 

 



 

departure time. It will not affect the final results since our 
experimental results showed that the K-th earliest arrival 
itinerary never exceeded this period even for K=100.  

C. Results  
The five types of queries mentioned above are used to test 

the two algorithms, and each type includes 400 queries, for K 
= 1, 10, 20, …, 100, respectively.  

Fig. 3 shows the execution time on the time-expanded 
model in responding to the queries of type L2L, L2S, S2S and 
S2L. First of all, Fig. 3(a) shows that the speed of the MS 
algorithm for the queries of type L2L is nearly the same as 
that for the queries of type L2S. Fig. 3(b) shows that the 
speed of the algorithm for the queries of type S2L is nearly 
the same as that for the queries of type S2S. By comparing 
Fig. 3(a) and Fig. 3(b), we can see that the MS algorithm for 
the queries departing from small stations runs faster than that 
for the queries departing from large stations. It is due to the 
fact that the departure nodes at a small station are usually 
fewer than those at a large station.  

Fig. 4 shows the execution time of revised MS algorithm 
on the time-dependent model for the queries of type L2L, 
L2S, S2S and S2L. It is seen that the efficiency of the 
algorithm is very robust and the execution time for all types 
of queries are nearly the same.  

From Fig. 3 (a) and Fig. 4(a), it is seen that the algorithm 
for the query types L2L and L2S on the time-dependent 
network is 3.3 times faster than that on the time-expanded 
network on average. From Fig. 3(b) with Fig. 4(b), it is seen 
that the algorithm for the query types S2S and S2L on the 
time-dependent network is 2.8 times faster than that on the 
time-expanded network on average.  

Fig. 5 compares the execution time of the algorithms on 
the two models for the “Random” queries. It is seen that, for 
any model, the execution time for 1000 ≤< K  is nearly the 
same as that for K=1. This result suggests the high efficiency 
of the MS algorithm. In addition, the modified K-earliest 
arrival itineraries algorithm on the time-dependent model is 
3.1 times faster than the original MS algorithm on the 
time-expanded model on average. 

 

V. CONCLUSIONS 
To solve the K-earliest arrival problem for the timetable 

information-based transportation system, we modified an 
excellent K-shortest paths algorithm proposed by Martins 
and Santos for the time-dependent model. The experimental 
results on Chinese railway system show that the modified 
algorithm is nearly 3 times faster than the original algorithm 
on the time-expanded model. 

 Theoretically, both of the algorithms can be guaranteed to 
find the K-earliest arrival itineraries. However, neither 
algorithm can guarantee that all of the itineraries found are 
reasonable in reality due to the intrinsic deficiency of the 
time-expanded and time-dependent models. For example, an 
itinerary found by the algorithms may pass through a station 
twice though at different time. In the next step, we plan to 
integrate the rationality check of the results into the 
algorithms.  
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Fig. 5.  Execution time of the two algorithms for the “Random”  queries. 
  




