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a b s t r a c t

An analog neural network architecture for support vector machine (SVM) learning is presented in this

letter, which is an improved version of a model proposed recently in the literature with additional

parameters. Compared with other models, this model has several merits. First, it can solve SVMs (in the

dual form) which may have multiple solutions. Second, the structure of the model enables a simple

circuit implementation. Third, the model converges faster than its predecessor as indicated by

empirical results.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Engineering applications of artificial intelligence often require
real-time solutions [1,2]. By employing artificial neural networks
based on analog circuits implementation, the computing proce-
dures are physically parallelled and distributed. After the pioneer-
ing work in this field by Hopfield and Tank [3,4], tremendous
interests have been aroused for designing neural networks with
analog circuits implementation in a variety of engineering appli-
cations (see [5–14] and references therein).

Support vector machines (SVMs) are widely used tools for
classification [15] and regression [16]. It can be modeled as a
quadratic programming (QP) problem, and therefore can be
solved by some recurrent neural networks capable of solving this
type of optimization problems, e.g., [17–20]. Specifically, [21]
presents a one-layer recurrent neural network and [22] presents a
simpler model in terms of circuits implementation. Both of the
two networks converge to steady-states corresponding to the
solutions of the SVMs under some conditions including:

� the Hessian of the objective function is positive definite; or
� the Hessian is positive semidefinite but the solution is unique.

In other words, the QP formulation has to be strictly convex,
which may not be the case in many applications (see Remark 1).
There exist some other networks which can potentially solve
SVMs without strict convexity assumption (e.g., [18–20]), but
none of them is as simple as the model in [22]. Then, is it possible
to design a neural network that has this nice property but is very
simple in structure?

In this letter, we present such a neural network for
SVM learning. It is actually a model in [20] with additional
parameters. Interestingly, this modification enables a very much
simpler circuits implementation, which is comparable to the
model in [22].

2. Architecture of the model

2.1. Preliminaries

Suppose that there are N training points for classification,
where each input ziARM is in one of the two classes yi ¼ þ1 and
yi ¼�1, i.e., the training data is ðzi; yiÞ for i¼ 1, . . . ,N. It is well-
known that the support vector machine (SVM) training problem
for classification can be formulated as a convex quadratic pro-
gramming (QP) problem [15]

min �
XN

i ¼ 1

aiþ
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajqij

s:t:
XN

i ¼ 1

aiyi ¼ 0, 0rairh, 8i¼ 1, . . . ,N, ð1Þ

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2012.01.004

$The work was supported by the National Basic Research Program

(973 Program) of China under Grant 2012CB316301, National Natural Science

Foundation of China under Grants 60805023 and 61134012, and Basic

Research Foundation of Tsinghua National Laboratory for Information Science

and Technology (TNList).
n Corresponding author.

E-mail address: xlhu@tsinghua.edu.cn (X. Hu).

Neurocomputing 86 (2012) 193–198



Author's personal copy

where qij ¼ yiyjKijðzi,zjÞ and Kijðzi,zjÞ is the so-called kernel func-
tion which can take various forms, e.g., Kijðzi,zjÞ ¼ ðz

T
i zjþ1Þp with

p an integer. The kernel function must satisfy Mercer’s condition
and the N�N dimensional matrix Q ¼ fqijg must be positive
semidefinite, which implies that the problem is convex. The
parameter h40 is a user-defined constant to control the tradeoff
between the maximization of the margin and the minimization of
errors. The above problem is referred to as the dual formulation of
the SVM.

Remark 1. In many applications, Q may not be positive definite.

For instance, in linear SVM, Kij ¼ zT
i zj and Q can be written as AAT

where A¼ ðy1z1,y2z2, . . . ,yNzNÞ
T ARN�M . When N4M, which is

often the case in practice, rankðQ ÞoN and Q is positive semi-
definite only. For another instance, it is easy to show that when
there are repeated samples in the training set, Q is singular and
thus positive semidefinite only.

2.2. Existing models

In this subsection, we briefly review a few state-of-the-art
models for solving the SVM problem. A typical one-layer recur-
rent neural network is presented in [21] with the following
dynamic equations:

t _xi ¼�xiþP
XN

j ¼ 1

ð1�qijÞxj�yimþ1

0
@

1
A, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yixi, ð2Þ

where t40 is a time constant, P is a projection operator (activa-
tion function) defined as follows

PðxÞ ¼

0, xr0,

x, 0oxoh,

h, xZh,

8><
>:

and xi and m denote the states of the network, which are time-
varying. In fact, xi corresponds to the variable ai in (1). Circuit
implementation of this network follows the idea that each
operator in this model can be implemented by a circuit module,
e.g., an op-amp.

Another SVM network is presented in [22]. The dynamic
equations are as follows:

t _xi ¼ 1�
XN

j ¼ 1

qijaj�yimþdiðai�xiÞ, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yiai, ð3Þ

where di40 for all i¼ 1, . . . ,N, ai ¼ PðxiÞ and other notations are
the same as in (2). Note that, here it is ai instead of xi that
corresponds to the variables of (1). Similar to the network (2), this
network can be implemented by circuit modules, too. Its major
advantage over the network (2) is that if di ¼ 2þ

PN
j ¼ 1 9qij9, it can

be implemented by a very simple circuit, which takes advantage
of the nonlinear properties of op-amps.

In [20], a neural network was proposed for solving variational
inequalities and convex optimization problems. When tailored for
solving (1), it is governed by the following dynamic equations:

t _xi ¼ 1�
XN

j ¼ 1

ðqijþyiyjÞaj�yimþai�xi, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yiai, ð4Þ

where ai ¼ PðxiÞ.
In terms of performance, the network (4) is superior to (2) and

(3) because when the Hessian matrix Q is positive semidefinite,
only (4) can guarantee the global convergence to solutions of the
SVM (1). The other two require positive definiteness of Q, or
positive semidefiniteness of Q plus uniqueness of the solution.
Therefore, the neural network (4) has broader applications than
the other two. However, its structure is not as simple as (3). Note
that there exist other neural networks capable of solving positive
semidefinite SVMs (e.g., [18]), but their structures are not as
simple as (3) either.

2.3. A revised model

Let us revise the model (4) by adding a constant di40 for
i¼ 1, . . . ,N, then the dynamic equations for the revised model are

t _xi ¼ 1�
XN

j ¼ 1

ðqijþyiyjÞaj�yimþdiðai�xiÞ, 8i¼ 1, . . . ,N,

t _m ¼
XN

i ¼ 1

yiai, ð5Þ

where ai ¼ PðxiÞ.
If we set di ¼ 2þ

PN
j ¼ 1 9qijþyiyj9, there exists a very simple

circuit for realizing this model as shown in Fig. 1, where (a) shows
the block diagram and (b) shows the circuit realization scheme.
Note that only the _xi equation is shown in Fig. 1(b). Here we set Vs

slightly lower than VCC, then the equation governing this circuit is

R0C0 _ui ¼
VS

h
�
XN

j ¼ 1

ðqijþyiyjÞvj�yivmþ 2þ
XN

j ¼ 1

9qijþyiyj9

0
@

1
Aðvi�uiÞ,

where

vi ¼

0, uir0,

ui, 0ouioVs,

Vs, uiZVs,

8><
>:

which is determined by the saturation property of the op-amp.
Then vi, ui, vm and R0C0 correspond to ai, xi, m and t in (5),
respectively. For ensuring that the resistance R0=ðqijþyiyjÞ shown
in Fig. 1(b) is always positive, the absolute value of qijþyiyj is
used. So, if for some j, qijþyiyj is positive (negative), then the
corresponding input voltage to the op-amp should be vj (�vj).

In what follows, we will show that the additional constants di

does not affect the stability property of the network. The analysis
is followed by revising the proof for the network (4) presented
in [20].

3. Stability analysis

Let Sn
¼ fanARN9an solves (1)}. First, we rewrite (5) in the

vector form

t _x ¼Dða�xÞ�Qaþe�yðmþyTaÞ,

t _m ¼ yTa,

(
ð6Þ

where x¼ ðx1,x2, . . . ,xNÞ
T , a¼ ða1, . . . ,aNÞ

T , e¼ ð1, . . . ,1ÞT , y¼
ðy1, . . . ,yNÞ

T , Q ¼ ½qij�N�N , D¼ diagðd1, . . . ,dNÞ, PðxÞ ¼ ðPðx1Þ, . . . ,
PðxNÞÞ

T and the other notations are the same as before.
Let ððxnÞ

T ,mnÞ
T denote an equilibrium point of (6). We have the

following results.
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Lemma 1. A point cn9ððxnÞ
T ,mnÞ

T is an equilibrium point of (6) if

and only if bn9ðPðxnÞ
T ,mnÞ

T is a Karush–Kuhn–Tucker (KKT) point of

the problem (1), where an9PðxnÞASn.

Proof. Since (1) is a special case of the problem studied in [23], it
can be seen that a point anASn if and only if there exists mnAR
such that

an ¼ Pðan�ðQan�eþymnÞÞ,

yTan ¼ 0:

(
ð7Þ

The point bn
¼ ððanÞ

T ,mnÞ
T is called the KKT point. From [24], the

first equation above is equivalent to

ða�anÞ
T
ðQan�eþymnÞZ0, 80rarh,

yTan ¼ 0,

(
ð8Þ

where h¼ ðh, . . . ,hÞT . It can be seen that this equation is further
equivalent to

ðai�an

i ÞðQan�eþymnÞiZ0, 80rairh, i¼ 1, . . . ,N: ð9Þ

Otherwise, there exists j and 0rajrh such that ðaj�an

j ÞðQan�

e�ymnÞjo0. Let a ¼ ðan

1, . . . ,an

j�1,aj,an

jþ1, . . . ,an
NÞ

T , then

ða�anÞ
T
ðQan�eþymnÞ ¼ ðaj�an

j ÞðQan�eþymnÞjo0,

which contradicts (8). Since di40, (9) is equivalent to

ðai�an

i Þd
�1
i ðQan�eþymnÞiZ0, 80rairh, i¼ 1, . . . ,N

and in the sequel, equivalent to

ða�anÞ
T D�1

ðQan�eþymnÞZ0, 80rarh:

From [24], this equation is equivalent to

an ¼ Pðan�D�1
ðQan�eþymnÞÞ: ð10Þ

Therefore, (7) is equivalent to

an ¼ Pðan�D�1
ðQan�eþymnÞÞ,

yTan ¼ 0:

(
ð11Þ

Now, let PO be the projection operator on ½0,h� �R, b¼ ðaT ,mÞT ,

and

GðbÞ ¼
a�D�1

ðQa�eþyðmþyTaÞÞ,

mþyTa:

(
ð12Þ

Then (11) becomes bn
¼ POðGðb

n
ÞÞ. Let cn ¼ ððxnÞ

T ,mnÞ
T be an

equilibrium point of (6). Clearly, it is a solution of c¼ GðPOðcÞÞ.

In addition, any solution of c¼ GðPOðcÞÞ, say cn, corresponds to a

solution of b¼ POðGðbÞÞ, i.e., POðcnÞ, which can be obtained by

applying a projection operator to both sides of cn ¼ GðPOðcnÞÞ. In

other words, every equilibrium point of (6) corresponds to a KKT

point of the SVM problem.

Similar to Lemma 2 in [20], it can be proved that there is a

bijective mapping between the solutions of b¼ POðGðbÞÞ and the

solutions of c¼ GðPOðcÞÞ. Then, a point cn is an equilibrium point

of (6) if and only if POðc
nÞ ¼ ððanÞ

T ,mnÞ
T is a KKT point of the SVM

problem. Since Q is positive semidefinite, any KKT point corre-

sponds to a solution of the SVM problem. Hence, anASn. This

completes the proof. &

Theorem 1. If Sn is not empty, then (6) always converges to a KKT

point of the SVM problem, denoted by ððxnÞ
T ,mnÞ

T , so that

an9PðxnÞASn.

Proof. Define a function

Vðc; cnÞ ¼
XN

i ¼ 1

xiðai�an

i Þþ
1

2

XN

i ¼ 1

ððan

i Þ
2
�a2

i Þþ
1

2
ðm�mnÞ

2, ð13Þ

where c¼ ðxT ,mÞT ,a¼ PðxÞ and cn ¼ ððxnÞ
T ,mnÞ

T is an equilibrium
point of (6). According to Lemma 4 in [20], VðcðtÞ; cnÞ is non-
negative and continuously differentiable on RNþ1, and its gradi-
ent is given by

rcV ¼
a�an

m�mn

 !
: ð14Þ

Suppose that cðtÞ is the solution of (6) with initial condition
cð0Þ ¼ c0. Following a similar procedure to that in [20], it is easy to
calculate the time derivative of V with respect to (6),

t _V ðtÞ ¼ ða�anÞ
T
½Dða�xÞ�Qaþe�yðmþyTaÞ�þðm�mnÞyTa

¼�ða�anÞ
T Q ða�anÞ�ðyT ða�anÞÞ

2

�ða�anÞ
T Dðx�aÞ�ða�anÞ

T
ðQan�eþymnÞ:

Fig. 1. (a) Block diagram of the architecture of the neural network (5). (b) Circuit

realization of ai .
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Since Q is positive semidefinite, according to (8), if we can prove
cðx,xnÞ9ða�anÞ

T Dðx�aÞZ0, then _V ðtÞr0 for tZ0. This is actu-
ally true by noticing that

fiðxi,x
n

i Þ9ðai�an

i Þdiðai�xiÞr0,

which can be reasoned as follows.

(1) If 0rxirh, then ai ¼ xi and fi ¼ 0.
(2) If xio0, then ai ¼ 0 and fi ¼ ð0�an

i Þdið0�xiÞr0 because
0ran

i rh.
(3) If xi4h, then ai ¼ h and fi ¼ ðh�an

i Þdiðh�xiÞr0 because
0ran

i rh.

Hence, cðx,xnÞ ¼
P

ifiðxi,x
n

i Þr0. The rest of the proof is similar to
the arguments for proving Theorem 2 in [20], which is omitted
here for brevity. &

Theorem 1 shows that only positive semidefiniteness of Q is
needed for ensuring the global convergence of the trajectory of
(5), in contrast to the models (2) and (3) which require stronger
conditions.

From the dynamic equations of the neural network (5), it
differs from the neural network (4) only in the additional scaling
factors di. One may wonder the influence of these factors on the
convergence rate of the network. Clearly, the function (13) can be
also used as a Lyapunov function for the network (4) and its time
derivative with respect to (4) is

t _V ðtÞ ¼�ða�anÞ
T Q ða�anÞ�ðyT ða�anÞÞ

2

�ða�anÞ
T
ðx�aÞ�ða�anÞ

T
ðQan�eþymnÞ:

From the proof of Theorem 1 it is easy to show that

ða�anÞ
T Dðx�aÞZ ða�anÞ

T
ðx�aÞZ0,

as diZ2 for all i. Hence, before convergence, with the same
parameters t and h, if at any time the states of the two neural
networks are identical, then the Lyapunov function V(t) has the
same positive value while it decreases faster with respect to (5)
than with respect to (4). In other words, the neural network (5)
converges to the correct states faster than (4) at such time
instants. However, this does not mean that (5) always converges
faster than (4) even with the same parameters and initial points,
because after evolving sometime the states of the two networks
will become different and the above relationship no longer holds.
To test the convergence rates of the networks we then resort to
numerical simulations (see Example 3 in the next section)

4. Numerical simulations

Example 1. We use the proposed SVM network to classify
Fisher’s Iris data set (a detailed description of this data set can
be found in ‘fisheriris’ in Matlab). There are 150 points in this data
set. Three kinds of Iris are to be classified based on four attributes:
petal width, petal length, sepal width and sepal length. We use
the SVM to separate class 1 and class 2. Since there are 17
repeated training samples in the data set, the Hessian Q here is
singular and positive semidefinite only. According to Theorem 1,
the proposed network can guarantee the convergence of the
solution in this scenario. We trained an SVM using 100 data
point, with h¼1 and a Gaussian kernel where s¼ 1. The trajec-
tories of the five non-saturated xi are depicted in Fig. 2(a), starting
from the zero initial point. Since two of the data points are
identical, only four trajectories are shown. The solution is char-
acterized by 23 support vectors and with only one misclassified
points. The separating function as well as the two attributes

(sepal length and sepal width) of the training data set are
depicted in Fig. 2(b).

Example 2. Consider training an SVM with the data in R2:
z1 ¼ ð2;2Þ

T ,z2 ¼ ð1;2Þ
T ,z3 ¼ ð1;1Þ

T ,z4 ¼ ð2;1Þ
T , with labels ðþ1,�1,

�1,þ1Þ, respectively. For a linear SVM, the solution to the primal
problem (w¼ ð2;0ÞT ,m¼�3, which correspond to the weights and
bias of the hyperplane, respectively) is unique. But the corre-
sponding ai’s are not unique, because

Q ¼

8 �6 �4 6

�6 5 3 �4

�4 3 2 �3

6 �4 �3 5

0
BBB@

1
CCCA

is semidefinite. Fig. 3(a) plots the state trajectories of ðxðtÞT ,mðtÞÞT

of the network (5) with the initial point ðxT
0 ,m0Þ

T
¼ ð�1,�1,�1,

�1;0ÞT , which reaches the solution an ¼ ð1:1125,0:8869,1:1131,
0:8873ÞT . Fig. 3(b) plots the state trajectories with the initial point
ðxT

0 ,m0Þ
T
¼ ð0;0,0;0,0ÞT , which reaches an ¼ ð1:0640,0:9363,1:0637,

0:9361ÞT . Both of them correspond to the same correct separating
hyperplane.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (ms)

S
ta

te
s

Fig. 2. (a) Time evolution of xi of the neural network (5) with t¼ 1 ms. (b) Decision

surface of the Iris data set using Gaussian kernel with h¼1 and s¼ 1. The margin

is indicated and the support vectors are highlighted.
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Example 3. From the dynamic equations, it is seen that the
neural network (5) differs from the neural network (4) only in
the scaling factors di. In this example, through numerical simula-
tions we test if the additional scaling factors introduced in the
model brings any advantages or disadvantages in terms of the
computing efficiency. A few sets of 2D training data with sample
size N were randomly generated, in which half of samples were
generated through an isotropic Gaussian distribution with mean
(�3,�3) and the other half were generated through an isotropic
Gaussian distribution with mean (3,3). The standard deviations of
the two Gaussians were both 2. The task was to separate the data
with a linear SVM, similar to Example 2. The two neural networks
(4) and (5) were both simulated for 30 trials starting from random
initial points between �50 and 50. Whenever

Jðt _xðtÞT ,t _mðtÞÞTJ2r10�5

was met, the simulation was terminated and the corresponding
time t was recorded as the time needed by the network for
solving this particular problem.

The average computing time for different sample sizes N are

plotted in Fig. 4. It is seen from the figure that the network (5) is

faster than the network (4). This conclusion is supported by the

one-tailed t-tests. In fact, the p values for N¼10,12,16,20 are,

respectively, 0.017, 0.015, 0.010, 3.9�10�5.

5. Concluding remarks

In this letter, a compact neural network architecture for
solving support vector classification problems is presented. The
model has several advantages compared with existing ones. First,
its structure enables simple circuit realization by taking advan-
tage of the inherent properties of op-amps. Second, it only
requires convexity of the problem rather than strict convexity,
which is in contrast to the models proposed in [21,22]. In terms of
the dynamic equations, this model is actually an improved
version of an existing neural network with additional scaling
factors. Numerical simulations indicate that these scaling factors
can speed up the convergence rate, which can be regarded as the
third advantage. Finally, the model can be easily extended for
solving convex quadratic programming problems.
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