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Abstract— Inverse kinematic motion planning of redundant
manipulators by using recurrent neural networks in the pres-
ence of obstacles and uncertainties is a real-time nonlinear
optimization problem. To tackle this problem, two subproblems
should be resolved in real time. One is the determination of
critical points on a given manipulator closest to obstacles, and
the other is the computation of joint velocities of the manip-
ulator which can direct the manipulator following a desired
trajectory and away from obstacles if it is getting close to
them. Different from our previous approaches where the critical
points on the manipulator were assumed to be known, these
points are to be computed by using a recurrent neural network
in the paper. A time-varying quadratic programming problem
is formulated for avoiding polyhedral obstacles. In view that
the problem is not strictly convex, an existing recurrent neural
network, general projection neural network, is applied for
solving it. By introducing a velocity smoothing technique into
our previous quadratic programming formulation of the joint
velocity assignment problem, a recently developed recurrent
neural network, improved dual neural network, is proposed to
solve it, which features lower structural complexity compared
with existing neural networks. Moreover, The effectiveness of
the proposed neural networks is demonstrated by simulations
on the Mitsubishi PA10-7C manipulator.

I. INTRODUCTION

Kinematically redundant robot manipulators are those
having more degrees of freedom than required to perform
given end-effector moving tasks. Many studies have been
reported about using kinematically redundant manipulators
for applications [1]. For obstacle avoidance, it is often
demanded to determine the critical point on the manipu-
lator that has the minimum (or near minimum) distance
to obstacles. However, in some recent studies [2], [3] the
critical points were assumed to be known a priori. This
assumption oversimplified real situations. Indeed, even if
the obstacles are static in the workspace, the nearest points

The work described in the paper was supported by the Research Grants
Council of the Hong Kong Special Administrative Region, China, under
Grants G HK010/06 and CUHK417608E, by the Science and Technology
Commission of Shanghai Municipality under Grant 08JC1412100, by the
National Natural Science Foundation of China under Grants 60805023,
60621062 and 60605003, by the National Key Foundation R&D Project
under Grants 2003CB317007, 2004CB318108 and 2007CB311003, by the
China Postdoctoral Science Foundation under Grants 20080430032 and
200801072, and by the Basic Research Foundation of Tsinghua National
Laboratory for Information Science and Technology (TNList).

Xiaolin Hu and Bo Zhang are with State Key Laboratory of Intelli-
gent Technology and Systems, Tsinghua National Laboratory for Infor-
mation Science and Technology (TNList), and Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China
xiaolin.hu@gmail.com; dcszb@tsinghua.edu.cn

Jun Wang is with Department of Mechanical and Automation Engi-
neering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
jwang@mae.cuhk.edu.hk

may change positions on the surfaces when the manipulator
is moving. In sensor-based motion planning, the point can
be determined by synthetic information of sensor fusion
technology; e.g., utilizing vision, ultrasonic and infra-red
sensors [4], [5]; while in model-based motion planning, it
can be computed via online distance minimization between
the manipulator and the obstacles. In this paper, the obstacles
are assumed to be 3D convex polyhedron and a time-varying
convex quadratic programming (QP) problem is formulated
to determine the critical point.

Obtaining the critical points is just a prerequisite. The next
step is to direct the manipulator away from the obstacles.
Since serial-link manipulators are considered throughout
the paper, every link should be assigned a velocity under
geometric configuration constraints. Many strategies about
the velocity control have been reported. A popular approach
is to solve a formulated optimization problem [2], [6], [7].
This approach has several advantages including practical
considerations such as joint limits, joint velocity limits
and obstacle avoidance into the optimization problem as
constraints. In particular, a QP formulation was proposed for
obstacle avoidance in [2], and an improved formulation was
presented in [3]. However, since a fixed parameter was used
in a critical inequality constraint in [3], an abrupt behavior of
the manipulator velocity was observed, which introduced risk
of derailing the operation. In the paper, this hard constraint
is replaced by a soft constraint using a smoothing technique.
The troublesome phenomenon is then eliminated.

It is seen that the entire control scheme proposed in the
paper comprises solving two time-varying QP problems,
which are called critical point problem and joint velocity

problem.
The bottleneck of any kinematic control algorithm is

intensive computation of manipulator motion in real-time.
To deal with this difficulty, recurrent neural networks were
developed for dynamic optimization and appeared to be a
promising approach. In the last decades, many recurrent neu-
ral networks have been developed and applied focusing on
achieving pseudoinverse solutions [8], minimum torque [9],
[10], minimum kinetic energy [11], optimal grasping force
[12], and so on. In [2] and [3], a recurrent neural network
called simplified dual neural network (SDNN) reported in
[13] was applied for solving the joint velocity problem. In
this paper, an even simpler neural network, the improved

dual neural network (IDNN) reported in [14] is applied for
solving the problem. Since neither SDNN nor IDNN can
solve the critical point problem which is not strictly convex,
a general projection neural network (GPNN) [15] is applied.
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Then, the inverse kinematic motion planning problem can
be solved by coupling two recurrent neural networks, IDNN
and GPNN. Simulation results will be presented to validate
this approach.

II. OBSTACLE AVOIDANCE SCHEME

A. Critical Point

An obstacle avoidance task is to identify the critical point
on the manipulator, from time to time, that has the minimum
distance to obstacles, then assign desired joint velocities to
the manipulator and direct it away from the obstacles. At
any time, there is a point O on every obstacle, defined as
obstacle point, and a point C on a link, defined as critical

point, so that |OC| is the minimum distance between the
particular obstacle-link pair. If the obstacle point O is known
at anytime, it is easy to locate the critical point C on the link
This is the case considered in [2] and [3]. Actually, in those
two studies, an obstacle was represented by a point without
geometric size. As discussed in introduction, this assumption
oversimplified real situations.

We now discuss how to obtain the critical point C on
manipulator and the corresponding point O on these objects
in a model-based environment where obstacles are 3D bod-
ies. The problem is formulated as a quadratic optimization
problem:

minimize 1
2‖(x, y, z)T − (x̃, ỹ, z̃)T ‖2

2

subject to (x, y, z)T ∈ U , (x̃, ỹ, z̃)T ∈ V
where U and V stand for the subsets of �3 occupied by the
obstacle and the manipulator, respectively. For every link and
every obstacle we should seek the optimum (x∗, y∗, z∗)T

and (x̃∗, ỹ∗, z̃∗)T to the above problem, which represent the
position of O on the obstacle and the critical point of C on
the link, respectively. For simplicity, throughout the paper,
the links are approximated by line segments and the detailed
shape information (such as radius, thickness) is ignored. But
in principle, more realistic configurations of links can be
considered. Then for every link we have

V =
{

(x̃, ỹ, z̃)T ∈ �3

∣∣∣∣ G · (x̃, ỹ, z̃)T = d,
η ≤ (x̃, ỹ, z̃)T ≤ η

}
,

where

G =
(

y2 − y1 x1 − x2 0
z2 − z1 0 x1 − x2

)
,

d =
(

(y2 − y1)x1 − (x2 − x1)y1

(z2 − z1)x1 − (x2 − x1)z1

)
.

In above description, (x1, y1, z1)T and (x2, y2, z2)T stand for
the position vectors of the two ends of the link, and η, η ∈ �3

stand for the lower and upper bounds of (x̃, ỹ, z̃)T . If U is
a convex polyhedron, without loss of generality, it can be
written as

U = {(x, y, z)T ∈ �3|A · (x, y, z)T ≤ e}
where A ∈ �q×3 and e ∈ �q are constants. In this case, the
optimization problem becomes a (convex) QP problem. By

introducing a new variable w = (xT , yT , zT , x̃T , ỹT , z̃T )T ,
the problem can be put into the following compact form,

minimize 1
2wT Qw

subject to Kw ∈ Π, w ∈ W (1)

where

Q =
(

I −I
−I I

)
,K =

(
A 0
0 G

)
,

Π =
{

ν ∈ �q+2

∣∣∣∣
(−∞

d

)
≤ ν ≤

(
e
d

)}
,

W =
{

w ∈ �6

∣∣∣∣
(−∞

η

)
≤ w ≤

(∞
η

)}
.

By solving (1), the obstacle point O, critical point C,
together with the distance between them can be obtained
simultaneously. Note that (1) is a time-varying optimization
problem as the the parameters K, Π,W change with time
while the manipulator or the obstacle itself is moving.

Remark 1: The convex optimization problem (1) is es-
tablished for every link of the manipulator versus every
obstacle. For the case of multiple links or obstacles, multiple
optimization problems in the form of (1) should be present.
In this sense, it is a local strategy, not a global one.

B. Joint Velocity

Taken obstacle avoidance into consideration, the forward
kinematics of a serial-link manipulator can be described by
the following augmented forward kinematics equation:

re(t) = fe(θ(t)), rc(t) = fc(θ(t), t) (2)

where re ∈ �m is m-dimensional position and/or orientation
vector of the end-effector, rc ∈ �3 is the position vector of
a critical point on every link, θ(t) is the joint vector of the
manipulator, and fe and fc are nonlinear functions of the
manipulator with respect to the end-effector and the critical
point respectively. Note that the critical point can vary its
position on a link and that is why rc(t) depends also on
t. There always exist more than one critical point in the
system no matter there are multiple obstacles or not because
a manipulator always has multiple links. Therefore multiple
equations similar to the second one should be present.

The manipulator path planning problem (also called in-
verse kinematics problem or kinematic control problem)
is to find the joint variable θ(t) for any given re(t) and
rc(t) through the inverse mapping of (2). Unfortunately, it
is usually impossible to find an analytic solution due to
the nonlinearity of fe(·) and fc(·). The inverse kinematics
problem is thus usually solved at the velocity level with the
relation

Je(θ)θ̇ = ṙe, Jc(θ)θ̇ ≈ ṙc, (3)

where Je(θ) = ∂fe(θ)/∂θ, Jc(θ) = ∂fc(θ)/∂θ are Jacobian
matrices, ṙe is the desired velocity of the end-effector, and ṙc

is the desired velocity of the critical point which should be
properly selected to effectively direct the link away from the
obstacle. Here, the dependence of rc on time is ignored for
simplifying the problem. In other words, it is assumed that
the sliding velocity of the critical point on a link is negligible
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compared with the joint velocities. Simulation studies (see
Section IV) have shown that this simplification is acceptable
in terms of the task competence and tracking error. However,
in practice it is often difficult to determine the suitable
magnitude of escape velocity ṙc. Even worse, if there are p
critical points, we should have 3p equalities of Jc(θ)θ̇ = ṙc;
then, if 3p > n, these equalities will be overdetermined.
Because of these considerations, Jc(θ)θ̇ = ṙc in (3) was
replaced by inequality constraints [2], [3]. the formulated
inequality in [3] is

⇀OCT Jc(θ)θ̇ � c, (4)

where ⇀OC represent the position vector pointing from O to
C (see Fig. ??) and c is a positive constant. It was shown
that this formulation enlarges the feasible solution space of
the QP problem in [2].

In order not to introduce too much restriction on the
feasible space and consequently obtain a better optimum, the
inequality constraint (4) should be applied only when |⇀OC| is
less than some threshold. However, such an idea suffers from
discontinuity in joint velocities; see the simulation example
in [3] and note an abrupt change in curves in Fig. 7. To
overcome this difficulty, here a time-varying parameter is
introduced

b̂(t) = s(|⇀OC|) max(0,−⇀OCT Jc(θ)θ̇)

where s(d) is a distance-based smoothing function defined
as

s(d) =

⎧⎪⎨
⎪⎩

1, if d � d2

sin2
(

π
2

d−d1
d2−d1

)
, if d1 < d < d2

0, if d � d1

(5)

with d1, d2 standing for the inner safety threshold and outer
safety threshold, respectively (d2 > d1), provided by users.
Then (4) is replaced with

−⇀OCT Jc(θ)θ̇ � b̂(t). (6)

When the distance between the link and obstacle reaches d2,
the system begins to repel the link away in a more and more
stringent manner. When the distance reaches d1, the system
prevents the link getting closer to the obstacle [2].

In view that ⇀OC = ( xc − xo, yc − yo, zc − zo )T ,
(6) can be rewritten as

−( xc − xo, yc − yo, zc − zo )Jc(θ)θ̇ � b̂(t).

Suppose there are p critical points. Let b = (b̂, · · · , b̂)T ∈ �p

and

L(θ) =

⎛
⎜⎝

( xo1 − xc1 , yo1 − yc1 , zo1 − zc1 )Jc1(θ)
...

( xop
− xcp

, yop
− ycp

, zop
− zcp )Jcp(θ)

⎞
⎟⎠ ,

where the subscripts oi and ci constitute an obstacle-point-
critical-point pair. For example, if there are two obstacles
and three serial links, then p = 6 because each obstacle cor-
responds to a critical point on each link. By these definitions,
the above inequality becomes

L(θ(t))θ̇(t) � b(t). (7)

Optimizer

e
r

Manipulator
Obstacle

detection

Sensors

Fig. 1. Kinematic control process.

Similar to [3] the following optimization problem is formu-
lated:

minimize
1
2
‖θ̇(t)‖2

2

subject to Je(θ(t))θ̇(t) = ṙe(t),
L(θ(t))θ̇(t) � b(t),
l � θ̇(t) � h,

(8)

where l and h are respectively lower and upper bounds of
the joint velocity.

Like problem (1), problem (8) is also a time-varying QP
problem. The entire kinematic control process is shown in
Fig. 1, similar to most optimization-based kinematic control
approaches [2], [6], [7], [9], [16], [17]. The desired end-
effector velocity ṙe and the obstacle information are fed into
the optimizer as inputs. In sensor-based control, the critical
points and obstacle points are detected with respect to the
current pose of manipulator; and in model-based control, they
are determined by solving problem (1). The time-varying
parameters of problems (1) and (8) are determined by the
pose of the manipulator and the position of the obstacle. The
optimal joint rate θ̇ that could make the manipulator avoid
obstacles is generated as the output of the “Optimizer” block.
By taking integration of the joint velocities with the known
initial values, the pose of the manipulator is determined.

III. NEURAL NETWORK MODELS

The bottleneck of the proposed method in Fig. 1 is the
intensive computation for solving the QP problems (1) and
(8), i.e., the “Obstacle detection” block and “Optimizer”
block. If conventional numerical algorithms are used, two
processing units with very high performance are required.
We here suggest two neural networks for solving (1) and
(8), which can be realized by hardware systems connected
by dense interconnections of simple analog computational
elements. Because of the analog nature of circuit systems,
neural networks have great potential in handling computa-
tionally expensive problems on-line [8]–[12].

Before the presentation of the neural networks, an acti-
vation function is introduced first. Suppose X is a box set,
i.e., X = {x ∈ �n|xi ≤ xi ≤ xi,∀i = 1, ..., n}, then
PΩ(x) = (PΩ(x1), · · · , PΩ(xn))T with

PΩ(xi) =

⎧⎨
⎩

xi, xi < xi,
xi, xi ≤ xi ≤ xi,
xi, xi > xi.

(9)
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Note xi can be +∞ and xi can be −∞. In particular, if
x = 0 and x = ∞, the operator becomes P�n

+
(x), where

�n
+ denotes the nonnegative quadrant of �n. To simplify

the notation, in this case it is written as x+. And the
definition can be simplified as x+ = (x+

1 , · · · , x+
n )T with

x+
i = max(xi, 0).
Consider solving problem (1). Because Q is positive

semidefinite only and many neural networks including the
SDNN used in [3] can not be applied. But according to [18],
this problem can be formulated into an equivalent generalized
linear variational inequality, and as a consequence, it can
be solved by the general projection neural network (GPNN)
studied extensively in [14], [15], [19]. When specialized to
solve (1) the GPNN’s dynamic equation is as follows (cf.
eqn. (17) in [18]):

ε
du

dt
= (M + N)T {−Nu + PW×Π((N − M)u)}, (10)

where ε > 0 and u = (wT , νT )T is the state variable and

M =
(

Q −KT

0 I

)
, N =

(
I 0
K 0

)
.

The output of the neural network is w(t), which is part of
the state vector u(t). The architecture of the neural network
can be drawn similarly as in [19] or [15], which is omitted
here for brevity. Since Q is positive semidefinite, according
to [18], the neural network is globally asymptotically con-
vergent to a solution of (1).

For solving (8) there exists many recurrent neural net-
works, among which the SDNN devised in [13] was the
simplest, as discussed in [3]. By observing the special form
of the problem, in the paper we propose to use the improved
dual neural network (IDNN) which was recently proposed in
[20]:

• State equation

ε
d

dt

(
�
ς

)
= −

(
� − (� + L(θ)v − b)+

Je(θ)v − ṙe

)
, (11a)

• Output equation

v = PΩ(−L(θ)T � + Je(θ)T ς), (11b)

where ε > 0 is a constant scaling factor, Ω = [l, h] is a
box set, (�T , ςT )T is the state vector and v is the output
vector θ̇. To realize this network by analogy circuits, n + p
amplifiers, m + p integrators and O[n(m + p)] connections
are needed. According to [20], the neural network is globally
asymptotically convergent to a solution of (8).

Note that the above network is even simpler than the
SDNN adopted in [3]. Actually, if that model is used to solve
(8), the number of amplifiers and the number of integrators
will be both p + n, while the number of connections will be
in the order of O[(p + n)2 + n(p + n)].

IV. SIMULATION RESULTS

In this section, the validity of the proposed obstacle
avoidance scheme and the real-time solution capabilities of
the proposed neural networks GPNN and IDNN are shown

through simulations with the Mitsubishi 7-DOF PA10-7C
manipulator. The coordinates setup, structure parameters,
joint limits, and joint velocity limits of this manipulator can
be found in [9]. In this study, only the position of the end-
point is concerned, then m = 3 and n = 7. The scaling
factors ε that control the convergence rates of the neural
networks (10) and (11) are both set to 10−4. The inner and
outer safety threshold d1 and d2 in (5) are set to 0.05m and
0.1m, respectively.

Let the end-effector follow a circular trajectory described
by ⎧⎨

⎩
xe(t) = x0 − 0.2 + 0.2 cos(2π sin2 πt

20 )
ye(t) = y0 + 0.2 sin(2π sin2 πt

20 ) cos π
6

ze(t) = z0 + 0.2 sin(2π sin2 πt
20 ) sin π

6 .

The radius is 20cm. The task time of the motion is 10s and
the initial joint angles are setup as θ(0)=(0, −π/4, 0, π/2,
0, −π/4, 0). Then the initial position of the end-effector
(x0, y0, z0) can be calculated according to the configuration
of the manipulator. The desired velocity ṙe(t) is determined
by taking the derivatives of xe(t), ye(t), ze(t) with respect
to t. In the workspace, suppose that there is a moving
tetrahedral obstacle when the manipulator is accomplishing
the motion task. Let the obstacle move also along a circular
path, which is described by

⎧⎨
⎩

xo(t) = x0 − 0.3 sin(πt
10 )

yo(t) = y0 − 0.3 + 0.3 cos(πt
10 )

zo(t) = z0,

where (xo, yo, zo)T is any point in the obstacle and
(x0, y0, z0)T is the initial position of that point. Clearly,
the path is a half circle with radius 30cm parallel to the
x-y plane. The initial positions of the tetrahedron vertices
are respectively (-0.4m, 0,0.2m), (-0.3m,0,0.2m), (-0.35m,-
0.1m,0.2m), (-0.35m, -0.05m, 0.4m). By some basic calcu-
lations, the parameters in (1) can be determined easily. Fig.
2 illustrates the moving trajectory of the obstacle as well as
the desired path of the end-effector.

We simultaneously solve problems (1) and (8) by coupling
the GPNN (10) and IDNN (11). Fig. 3 shows the continuous
solution θ̇(t) to problem (8). By virtue of the solution of
problem (1) obtained by the GPNN (10) it is easily to
calculate the minimum distances between the obstacle and
manipulator arms, which are plotted in Fig. 4. From the
subfigure (c), when Link 3 enters the outer safety threshold,
that is, the distance to the obstacle is smaller than 10cm,
the obstacle avoidance scheme repels it away. Fig. 4 also
plots the distance between the obstacle and each link without
the obstacle avoidance scheme. It is seen that in this case,
Link 3 will penetrate into the obstacle (corresponding to zero
distance). Figs. 5 and 6 depict the tracking velocity error and
position error, both of which are very small. Fig. 7 shows
the comparison of the minimized objective function with and
without the obstacle avoidance scheme. It is reasonable to
observe that the objective function value in the former case
is greater than that in the latter case.
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Fig. 2. Trajectories of the end-effector and the moving obstacle.
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Fig. 3. Joint velocities.

V. CONCLUDING REMARKS

In some recent obstacle avoidance control schemes for
kinematically redundant robot manipulators, the positional
information of the the critical points on the manipulator
related to the obstacles were assumed to be available a priori.
In the paper, we provide a convex optimization problem
formulation for determining such points by assuming convex-
shape obstacles and serial-link manipulator. In particular,
if the obstacle is a polyhedron, the problem becomes a
quadratic programming (QP) problem. For solving this prob-
lem in real-time a general projection neural network (GPNN)
is proposed.

A velocity smoothing technique is introduced into a previ-
ously established QP formulation of velocity control. Then,
a simple neural network called the improved dual neural
network (IDNN) is adopted to solve the problem in real-
time.

Compared with existing counterparts for solving the two
QP problems using neural networks, the selected IDNN and
GPNN possess lower model complexity and high perfor-
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Fig. 4. Minimum distance between the obstacle and (a) Link 1, (b) Link
2, (c) Link 3.
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Fig. 5. Velocity error of the end-effector.
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mance. The solutions to the time-varying QP problems using
the neural networks are simulated based on the PA10-7C
robot manipulator, which validate the effectiveness of the
proposed approach.
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