
Recurrent Convolutional Neural Network for Object Recognition

Ming Liang Xiaolin Hu

State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology (TNList)

Department of Computer Science and Technology

Center for Brain-Inspired Computing Research (CBICR)

Tsinghua University, Beijing 100084, China

liangm07@mails.tsinghua.edu.cn, xlhu@tsinghua.edu.cn

Abstract

In recent years, the convolutional neural network (CNN)

has achieved great success in many computer vision tasks.

Partially inspired by neuroscience, CNN shares many prop­

erties with the visual system of the brain. A prominent dif­

ference is that CNN is typically a feed-forward architecture

while in the visual system recurrent connections are abun­

dant. Inspired by this fact, we propose a recurrent CNN

(RCNN) for object recognition by incorporating recurrent

connections into each convolutional layer. Though the in­

put is static, the activities of RCNN units evolve over time

so that the activity of each unit is modulated by the ac­

tivities of its neighboring units. This property enhances

the ability of the model to integrate the context informa­

tion, which is important for object recognition. Like other

recurrent neural networks, unfolding the RCNN through

time can result in an arbitrarily deep network with a fixed

number of parameters. Furthermore, the unfolded network

has multiple paths, which can facilitate the learning pro­

cess. The model is tested on four benchmark object recog­

nition datasets: CIFAR-10, CIFAR-100, MNIST and SVHN.

With fewer trainable parameters, RCNN outperforms the

state-of-the-art models on all of these datasets. Increas­

ing the number of parameters leads to even better perfor­

mance. These results demonstrate the advantage of the re­

current structure over purely feed-forward structure for ob­

ject recognition.

1. Introduction

The past few years have witnessed the bloom of convo­
lutional neural network (CNN) in computer vision. Over
many benchmark datasets CNN has substantially advanced
the state-of-the-art accuracies of object recognition [26, 50,

33, 5, 43]. For example, after training on 1.2 million im-

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

ages from ImageNet [8], CNN [26] has achieved better per­
formance than handcraft features by a significant margin in
classifying objects into 1000 categories. Furthermore, the
pre trained CNN features on this dataset have been trans­
fered to other datasets to achieve remarkable results [5,43].

CNN is a type of artificial neural network, which origi­
nates from neuroscience dating back to the proposal of the
first artificial neuron in 1943 [34]. In fact, CNN, as well
as other hierarchical models including Neocognitron [13]

and HMAX [38], is closely related to Hubel and Wiesel's
findings about simple cells and complex cells in the pri­
mary visual cortex (Vl)[23, 22]. All of these models have
purely feed-forward architectures, which can be viewed as
crude approximations of the biological neural network in
the brain. Anatomical evidences have shown that recurrent
connections ubiquitously exist in the neocortex, and recur­
rent synapses typically outnumber feed-forward and top­
down (or feedback) synapses [6]. Due to the presence of
recurrent and top-down synapses, object recognition is ac­
tually a dynamic process though the input is static. Specific
functions of these synapses remain unclear, but it is gener­
ally believed that recurrent synapses play an important role
in context modulation. The processing of visual signals is
strongly modulated by their context [1]. Normally we do
not perceive this effect without attention, but the effect gets
prominent in perceptual illusions, e.g., the famous Fraser
spiral illusion [12]. Context modulation is also observed
in the responses of individual neurons in the visual system.
For instance, the response properties of V 1 neurons can be
altered in many ways by changing the context around their
classical receptive fields (RFs) [42]. This phenomenon is
suggested to be induced by recurrent synapses in VI [7, 54].

The context is important for object recognition (Figure
1). A feed-forward model can only capture the context (e.g.,

the face in Figure 1) in higher layers where units have larger
RFs, but this information cannot modulate the activities of
units in lower layers responsible for recognizing smaller ob-

3367

Figure 1. Importance of context for object recognition. Without

the context (face), it is hard to recognize the black curve in the

middle area as a nose.

jects (e.g., the nose in Figure 1). To utilize this informa­
tion, one strategy is to use top-down (or feedback) connec­
tions to propagate it downwards [32], which is adopted in
the convolutional deep belief networks (CDBN) [31]. In
this study, we take a different strategy, that is, use recurrent
connections within the same layer of deep learning models.
It is expected that, equipped with context modulation abil­
ity, these lateral connections may boost the performance of
deep learning models.

In the paper, we present a recurrent CNN for static ob­
ject recognition. The architecture is illustrated in Figure
2, where both feed-forward and recurrent connections have
local connectivity and shared weights among different loca­
tions. This architecture is very similar to the recurrent mul­
tilayer perceptron (RMLP) which is often used for dynamic
control [11, 37] (Figure 2, middle). The main difference is
that the full connections in RMLP are replaced by shared
local connections, just as the difference between MLP [40]

and CNN. For this reason, the proposed model is called the
recurrent convolutional neural network (ReNN).

rr , , , , . ' ,

�
, , , . , , , , t \

Ll
CNN

\CD

1

\

RMLP

I�
l�
I

, , , , , , , ,
f \
Ll

RCNN

\
1
1

- - - - � Feed-forward connection � Recurrent connection

Figure 2. Illustration of the architectures of CNN, RMLP and

RCNN. For each model two hidden layers are shown.

The proposed RCNN was tested on several benchmark
object recognition datasets. With fewer parameters, RCNN
achieved better results than the state-of-the-art CNNs over
all of these datasets, which validates the advantage of
RCNN over CNN. The remaining content is organized as
follows. Section 2 reviews some related work. Section 3

describes the architecture of RCNN. Section 4 presents the
experimental results and analysis. Finally, Section 5 con-

eludes the paper.

2. Related work

2.1. Convolutional neural networks

Inspired by Rubel and Wiesel's breakthrough findings in
cat [23][22], Fukushima [13] proposed a hierarchical model
called Neocognitron, which consisted of stacked pairs of
simple unit layer and complex unit layer. The first CNN
was proposed by LeCun et al. [28][27]. Essentially CNN
differs from the Neocognitron by incorporating the back­
propagation (BP) algorithm for learning the receptive fields
of simple units. Since its birth, CNN has been characterized
by local connections, weight sharing and local pooling. The
first two properties enable the model to discover local in­
formative visual patterns with fewer adjustable parameters
than MLP. The third property equips the network with some
translation invariance. As suggested by Saxe et al. [41], the
excellent performance of CNN can be largely attributed to
these properties as certain structures with random weights
could also achieve good results.

Over the past years, many techniques have have been de­
veloped for improving the performance of CNN. The recti­
fied linear function [14] becomes the most commonly used
activation function due to its resistance to the notorious gra­
dient vanishing effect in the BP algorithm. Dropout [48] is
an effective technique to prevent neural networks from over­
fitting in training. To leverage the model averaging ability
of dropout, Goodfellow et al. [17] used max pooling over
feature channels as the activation function. To strengthen
the nonlinearity of convolutional units, Lin et al. [33] pro­
posed the network in network (NIN) structure, in which
convolution was replaced by the local multilayer perceptron
(MLP) [39] sliding over input feature maps. To prevent NIN
from over-fitting, the fully connected layers were replaced
by the global average pooling layer. Simonyan and Zisser­
man [44] used 3 x 3 convolutions to build very deep net­
works, considering that a stack of small filters have stronger
nonlinearity than a large filter with the same amount of pa­
rameters. Szegedy et al. [50] proposed the multi-scale in­
ception modules and built the GoogLeNet based on them.
Small filters were also favored in this model. CNN is a
computation-intensive model and is usually hard to run on
CPU. The use of GPU has greatly facilitated the training and
testing of CNN on large-scale datasets. The first successful
GPU implementation of CNN refers to the AlexNet [26]

which won the recognition competition in the ImageNet [8]

Large Scale Visual Recognition Challenge (lLSVRC) 2012.

Since then, most submissions to this annual competition
were based on GPU implemented CNN.

3368

2.2. Recurrent neural networks

Recurrent neural network (RNN) has a long history in
the artificial neural network community [4, 21, 11, 37, 10,
24], but most successful applications refer to the modeling
of sequential data such as handwriting recognition [18] and
speech recognition[19]. A few studies about RNN for static
visual signal processing are briefly reviewed below.

In [20] a multi-dimensional RNN (MDRNN) is proposed
for off-line handwriting recognition. MDRNN has a di­
rected structure in that it treats the image as 2D sequen­
tial data. Furthermore, MDRNN has a single hidden layer,
which cannot produce the feature hierarchy as CNN.

In [2] a hierarchical RNN called the Neural Abstraction
Pyramid (NAP) is proposed for image processing. NAP is
a biology-inspired architecture with both vertical and lat­
eral recurrent connectivity, through which the image in­
terpretation is gradually refined to resolve visual ambigu­
ities. In designing the structure, biological plausibility is
stressed. For example, it employs excitatory and inhibitory
units, which are not considered in most deep learning mod­
els. It is unclear whether these more biologically plausible
techniques would make NAP more effective than state-of­
the-art deep learning models. More importantly, though the
general framework of NAP has recurrent and feedback con­
nections, for object recognition only a feed-forward version
was tested. The recurrent NAP was used for other tasks
such as image reconstruction.

Besides NAP, top-down connections have been used in
some other hierarchical models. Lee et at. [31] proposed
CDBN for unsupervised feature learning. During inference
the information in the top layer could be propagated to the
bottom layer through the intermediate layers between them.
Different from this layer-by-layer propagation idea, Pin­
heiro and Coli obert [36] used extra connections from the
top layer to the bottom layer of a CNN directly. This model
was used for scene labeling. These models are different
from RCNN where recurrent connections exist within the
same layer, not between layers.

There is an interesting relationship between RCNN and
some sparse coding models [15] where fixed-point updates
are used in inference. The iterative optimization procedures
implicitly define recurrent neural networks. Note that su­
pervised learning techniques can be incorporated into the
unsupervised learning framework of sparse coding models
[3]. But these techniques have not made the sparse coding
models competitive with CNN for object recognition.

Finally, our model is also related to the recursive neu­
ral network [46], in which a recursive layer is unfolded
to a stack of layers with tied weights. Socher et at. [45]
used a recursive neural network to perform scene parsing.
Eigen et at. [9] studied the factors that influence the per­
formance of CNN by employing a recursive convolutional
neural network, which is equivalent to the time-unfolded

version of RCNN but without feed-forward input to each
unfolded layer.

3. RCNN Model

3.1. Recurrent convolutional layer

The key module of RCNN is the recurrent convolutional
layer (RCL). The states of RCL units evolve over discrete
time steps. For a unit located at (i, j) on the kth feature map
in an RCL, its net input Zijk(t) at time step t is given by:

Zijk(t) = (w�f u(i,j)(t) + (wkf x(i,jl(t - 1) + bk· (1)

In the equation u(i,j)(t) and x(i,j)(t - 1) denote the feed­
forward and recurrent input, respectively, which are the vec­
torized patches centered at (i, j) of the feature maps in the

previous and current layer, w� and wk denote the vector­
ized feed-forward weights and recurrent weights, respec­
tively, and bk is the bias. The first term in (1) is used in
standard CNN and the second term is induced by the recur­
rent connections.

The activity or state of this unit is a function of its net
input

(2)

where! is the rectified linear activation function

!(Zijk(t)) = max(zijk(t), 0), (3)

and g is the local response normalization (LRN) function
[26]

!ijk(t) g(fijk (t)) = -(---nu-. n-(K'::"":, k"-'-+'-'-N-'-/2-) ---)-:0/3
1 + N L (fijk,)2

k' =max(O,k- N /2)

(4)

where K is the total number of feature maps in the cur­
rent layer. Note that in the denominator in (4) the sum runs
over N feature maps at the same location (i, j) (usually
N < K), and ex and (3 are constants controlling the am­
plitude of normalization. In addition !(Zijk(t)) has been
abbreviated as !ijk (t). LRN mimics the lateral inhibition
in the cortex, where different features compete for large re­
sponses. LRN is used in our model for preventing the states
from exploding.

Equations (1) and (2) describe the dynamic behavior of
the RCL. Unfolding this layer for T time steps results in a
feed-forward subnetwork of depth T + 1. See the top left
of Figure 3 for an example with T = 3. While the recur­
rent input evolves over iterations, the feed-forward input re­
mains the same in all iterations. When t = 0 only the feed­
forward input is present. The subnetwork has several paths
from the input layer to the output layer. The longest path
goes through all unfolded recurrent connections (therefore

3369

.. :··················x··································
� I Output

� I I

t=2
1\ r------7'+-.: \
1\ 1 \ 1 \

�¥--'r-.....J: \
r----r--I-. : \! /

I \, I
\ \ : y : L-_���.....J \ \ I II I �..... \ 'I I \ I ';:::, \}-.! \ I::-.......... \ 1,\ \ I "'11 t=O

I

1'1'1'1'1'
�--tJl-L ... L---,

I I I I I

�
Soft ax layer

Max poolin (lobal)

Layer 5
(recurrent convolution)

Layer 4
(recurrent convolution) � : / \ : Max poolin

" , I : 'c&:i----
, \

Layer

(recurrent convolution)

, \ Layer 2

Max poolin

\
, \ , I D [}l

Layer 1
(convolution) ;;�����;:��� ����.;;;�; � ,

Ii \
connection connection

: L-__ -j'*
I

______J

__________ >
: , I Input
;. ••••••••••• 1 . 1 ••

Figure 3. The overall architecture of RCNN. Left: An RCL is unfolded for T = 3 time steps, leading to a feed ... forward subnetwork with

the largest depth of 4 and the smallest depth of 1. At t = 0 only feed ... forward computation takes place. Right: The RCNN used in this

paper contains one convolutional layer, four RCLs, three max pooling layers and one softmax layer.

length = T + 1), while the shortest path goes through the
feed ... forward connection only (therefore length = 1). The
effective RF of an RCL unit in the feature maps of the pre ...
vious layer expands when the iteration number increases. If
both input and recurrent filters in equation (1) have square
shapes in each feature map, then the effective RF of an RCL
unit is also square, whose side length is (Lrec-1)T + L feed,
where L feed and Lrec denote the side lengths of the input
and recurrent filters, respectively.

3.2. Overall architecture

RCNN contains a stack of RCLs, optionally interleaved
with max pooling layers. See Figure 3 for the architec ...
ture used in this work. To save computation, layer 1 is the
standard feed ... forward convolutional layer without recurrent
connections, followed by max pooling. On top of this, four
RCLs are used with a max pooling layer in the middle. Be ...
tween neighboring RCLs there are only feed ... forward con ...
nections. Both pooling operations have stride 2 and size 3.
The output of the fourth RCL follows a global max pooling
layer, which outputs the maximum over every feature map,
yielding a feature vector representing the image. This is
different from the model in [26] where fully connected lay ...

ers are used or the models in [33, 50] where global average
pooling is used. Finally a softmax layer is used to classify
the feature vectors to C categories whose output is given by

(k = 1,2, ... , C) (5)

where Yk is the predicted probability belonging to the kth
category, and x is the feature vector generated by the
global max pooling. Training is performed by minimizing
the cross ... entropy loss function using the backpropagation
throught time (BPTT) algorithm [52]. This is equivalent to
using the standard BP algorithm on the time ... unfolded net ...
work. The final gradient of a shared weight is the sum of its
gradients over all time steps.

If we unfold the recurrent connections for T time steps,
the model becomes a very deep feed ... forward network with
4(T + 1) + 2 parameterized layers, where T + 1 is the depth
of each RCL. But 4(T + 1) + 2 is only the length of the
longest path from the input layer to the output layer, and
there are many other paths with different lengths. Among
them the shortest path has length 6, which is the feed ...
forward path bypassing all recurrent connections.

3370

3.3. Discussion

From the computational perspective, the recurrent con­
nections in RCNN offer several advantages. First, they en­
able every unit to incorporate context information in an ar­
bitrarily large region in the current layer. In fact, as the time
steps increase, the state of every unit is influenced by other
units in a larger and larger neighborhood in the current layer
(equation (1»; as a consequence, the size of regions that
the unit can "watch" in the input space also increases. In
CNN, the size of the RFs of the units in the current layer
is fixed, and "watching" a larger region is only possible for
units in higher layers. But unfortunately the context seen
by higher-level units cannot influence the states of the units
in the current layer without top-down connections. Sec­
ond, the recurrent connections increase the network depth
while keep the number of adjustable parameters constant by
weight sharing. This is consistent with the trend of modern
CNN architecture: going deeper with relatively small num­
ber of parameters [33, 44, 50]. Note that simply increasing
the depth of CNN by sharing weights between layers can
result in the same depth and the same number parameters
as RCNN, but such a model may not compete with RCNN
in performance, as verified in our experiments (see Section
4.2.1). We attribute this fact to the difficulty in learning
such a deep model. Then here comes the third advantage
of RCNN - the time-unfolded RCNN is actually a CNN
with multiple paths between the input layer to the output
layer (Figure 3), which may facilitate the learning. On one
hand, the existence of longer paths makes it possible for the
model to learn highly complex features. On the other hand,
the existence of shorter paths may help gradient backprop­
agation during training. Multi-path is also used in [50, 30],
but there extra objective functions are used in hidden layers
to alleviate the difficulty in training deep networks, which
are not used in RCNN.

3.4. Implementation

Many hyper-parameters may affect the performance of
RCNN such as the numbers of feature maps and the filter
size in each layer. We did not explore the best configura­
tion. Instead, we limited the search in a constrained hyper­
parameter space. First, layers 1 to 5 were constrained to
have the same number of feature maps K. As a conse­
quence the model can be denoted by RCNN-K. For exam­
ple, RCNN-96 indicates that each of the five layers has 96
feature maps. Second, the feed-forward filter size in layer 1
was 5 x 5, the feed-forward and recurrent filter sizes in lay­
ers 2 to 4 were all 3 x 3. So the total number of parameters of
RCNN-K was approximately 72K2, which only accounted
for the weights in RCLs because other layers had far fewer
parameters.

The hyper-parameters of LRN in (4) were set as a =

0.001, f3 = 0.75 and N = K/8 + 1. Dropout [48] was used

after each RCL except layer 5, which was connected to the
softmax layer. If the RCL was followed by a pooling layer,
dropout was placed after pooling.

4. Experiments

iterations

:r�---11
2 iterations I ! \ I

:r�---r: :I 66 \ :1 1 iteration I , , I I L_ -�, ,,.-----'-1-------- I " I I I I I
:11 \:1

I[}[J' \ : la£]' \ I
4J :� 1 : 41 :

I ;', I I , \
I I 1 1 I

r�---r r�--T n;---r
: � I \ "

"

I I I \ , \
I 1 I I , I

, t ' \ , \ " \ / \ " �
rCNN

Figure 4. The subnetworks used to construct rCNNs. They are

used to replace the RCLs in RCNN. The layers surrounded by the

dotted box have tied weights. From left to right, the subnetworks

correspond to the RCL with one, two and three iterations, respec­

tively.

4.1. Overall settings

The RCNN was implemented using cuda-convnet2 [26]
developed by Alex krizhevsky. Experiments were run
on two GPUs with data parallelism. The models were
evaluated on four benchmark object classification datasets,
CIFAR-lO [25], CIFAR-lOO [25], MNIST [29] and SVHN
[35]. We found that a few iterations of the dynamic process
of RCNN were able to produce excellent results. Except on
CIFAR -10, where different number of iterations were com­
pared, on the other three datasets, the iteration number was
set to 3.

The training procedure followed [26]. The model was
trained using the BPTT algorithm in combination with
stochastic gradient descent. The initial learning rate was set
heuristically and annealed according to a schedule predeter­
mined on the validation set. When the accuracy stopped im­
proving, the learning rate was decreased to its 1/10. Three
annealing steps were used so that the final learning rate was
1/1000 of the initial value. The momentum for all datasets
were fixed at 0.9. Weight decay was used as another reg­
ularizer besides dropout. All weights of the model were
set to have the same decay term. Dropout probabilities and
weight decay rate were tuned. For CIFAR-lO, CIFARlOO
and SVHN, the images were preprocessed by removing the
per-pixel mean value calculated over the training set. For
MNIST the raw images were used as input.

3371

4.2. C IFAR-IO

The CIFAR-I0 dataset [26] consists of 60000 color im­
ages of 32 x 32 pixels in 10 classes. The total dataset was
split into 50000 training images and 10000 testing images.
The last 10000 training images were used for validation.
After the hyper-parameters were determined, the model was
trained from scratch on all 50000 training images.

4.2.1 Comparison with baseline models

Error (%) Model No. of Paramo
Training Testing

rCNN-96 (1 iter) 0.67 M 4.61 12.65

rCNN-96 (2 iters) 0.67 M 2.26 12.99

rCNN-96 (3 iters) 0.67 M 1.24 14.92

WCNN-128 0.60 M 3.45 9.98

RCNN-96 (1 iter) 0.67 M 4.99 9.95

RCNN-96 (2 iters) 0.67 M 3.58 9.63

RCNN-96 (3 iters) 0.67 M 3.06 9.31

Table 1. Comparison with the baseline models on CIFAR-lO

We analyzed the properties of RCNN by comparing it
with two baseline models. The first baseline model was con­
structed by removing the recurrent connections in RCNN,
which becomes a conventional CNN. For fair comparison,
we used more feature maps in each layer to make its number
of parameters approximately the same as RCNN. To em­
phasize this point, the model was denoted by WCNN (wide
CNN). Note that WCNN was similar to the VGG very deep
model [44] as most layers used 3 x 3 filters. The second
baseline model was constructed by removing the recurrent
connections in each RCL of RCNN but adding a cascade
of duplicated convolutional layers. This was called recur­
sive CNN [9] or rCNN for short. The cascade of duplicated
convolutional layers can be understood as the time-unfolded
version of RCL starting at t = 1 without feed-forward input
(Figure 4). In other words in iterations of RCNN, the feed­
forward input (the first term in equation (1» was always
there, but in iterations of rCNN it was absent. Please com­
pare the top-left of Figure 3 and Figure 4. Note that rCNN
had exactly the same number of parameters as RCNN.

RCNN-96 was used for comparison. Because cuda­
convnet2 [26] requires the number of filters to be multi­
ples of 16, we selected WCNN-128 (0.6 million parame­
ters) which has the closest complexity with RCNN-96 and
rCNN-96 (0.67 million parameters). For both RCNN and
rCNN, 1, 2 and 3 iterations were tested. Table 1 shows the
comparison results.

WCNN-128 achieved much better performance than
rCNN in terms of testing accuracy. In fact, WCNN-128 al­
ready surpassed most of the models shown in Table 2, which
validates the effectiveness of extensive use of 3 x 3 filters

[44]. However, WCNN was significantly outperformed by
RCNN with a few iterations.

More iterations in RCNN led to both lower training error
and lower testing error, and more iterations in rCNN led
to lower training error but higher testing error (Table 1).
In fact, the training errors of the three rCNNs were even
lower than the corresponding RCNNs. Clearly, overfitting
has occurred in rCNN, a phenomenon also reported in [9].
The comparison indicates that the mUlti-path structure of
RCNN is less prone to overfitting than the chain structure
of rCNN.

4.2.2 Comparison with state-of-the-art models

Model No. of Paramo Testing Error (%)
Without Data Augmentation

Maxout [17] >5 M 11.68

Prob maxout [47] >5 M 11.35

NIN [33] 0.97 M 10.41

DSN [30] 0.97 M 9.69

RCNN-96 0.67 M 9.31
RCNN-128 1.19 M 8.98
RCNN-160 1.86 M 8.69
RCNN-96 (no dropout) 0.67 M 13.56

NIN (no dropout) [33] 0.97 M 14.51

With Data Augmentation

Prob maxout [47] >5 M 9.39

Maxout [17] >5 M 9.38

DropConnect (12 nets) [51] 9.32

NIN [33] 0.97 M 8.81

DSN [30] 0.97 M 7.97

RCNN-96 0.67 M 7.37
RCNN-128 1.19 M 7.24
RCNN-160 1.86 M 7.09

Table 2. Comparison with existing models on CIFAR-lO

We then compared RCNN with the state-of-the-art mod­
els on this dataset. Three models with different K's were
tested: RCNN-96, RCNN-128 and RCNN-160. The num­
ber of iterations was set to 3. All of them outperformed ex­
isting models, and the performance was steadily improved
with more features maps (Table 2). Among the existing
models for comparison NIN and DSN had the fewest pa­
rameters, about 1 million. RCNN-96 had even fewer pa­
rameters, 0.67 million, but achieved better results. Note
that the maxout networks, NIN and DSN pre-processed the
data with global contrast normalization and ZCA whiten­
ing, while we simply subtracted the per-pixel mean value
from the data.

Dropout played an important role for RCNN to achieve
these remarkable results. Without dropout, the error rate
of RCNN-96 was 13.56%, much higher than 9.31% with
dropout. But this error rate was lower than that of NIN with­
out dropout (14.51 %).

3372

We also tested RCNN when data was augmented with
translations and horizontal reflections as in [17]. In the
training phase, crops of 24 x 24 pixels were randomly ex­
tracted from the original image and randomly horizontally
reflected. In the testing phase, nine crops were uniformly
extracted from the image so that the interval between neigh­
boring crops was four pixels. All of the nine outputs were
averaged to give the final output. RCNN-96 achieved sig­
nificantly better result than the state-of-the-art models using
much fewer parameters. And again, simply increasing K
led to even better results. See Table 2 for details.

4.3. C IFAR-IOO

Model No. of Par am. Testing Error (%)
Maxout [17] >5 M 38.57

Prob maxout [47] >5 M 38.14

Tree based priors [49] 36.85

NIN [33] 0.98 M 35.68

DSN [30] 0.98 M 34.57

RCNN-96 0.68 M 34.18
RCNN-128 1.20 M 32.59
RCNN-160 1.87 M 31.75

Table 3. Comparison with existing models on CIFAR-IOO

CIFAR-100 has 100 classes of images in the same for­
mat as CIFAR-lO. The two datasets have the same size,
so the number of images in each CIFAR-100 class is only
1/10 of that in CIFAR-lO. We tested three RCNNs without
data augmentation. The same setting as in CIFAR-I0 was
adopted here without further tuning the hyper-parameters.
Again RCNN-96 outperformed the state-of-the-art models
with fewer parameters, and the performance kept improv­
ing by increasing K. Table 3 shows the comparison result.

4.4. MN IST

Model No. of Paramo Testing Error (%)
NIN [33] 0.35 M 0.47

Maxout [17] 0.42 M 0.45

DSN [30] 0.35 M 0.39

RCNN-32 0.08 M 0.42

RCNN-64 0.30 M 0.32
RCNN-96 0.67 M 0.31
Table 4. Comparison with existing models on MNIST

MNIST [29] is one of the most well known datasets in
the machine learning community. It consists of hand writ­
ten digits of 0 to 9. There are 60000 training images and
10000 testing images. The images are in gray scale with
size 28 x 28 pixels. We compared RCNN with other mod­
els without data augmentation and model averaging tech­
niques. This benchmark is much easier than the two CI­
FAR datasets, and we preferred smaller K s. The results are

shown in Table 4. RCNN-64 outperformed other models us­
ing only 0.30 million parameters. In contrast, 0.42 million
parameters were used in Maxout networks and 0.35 million
parameters were used in NIN and DSN. No preprocessing
was used by RCNN while the other models used global con­
trast normalization and ZCA whitening.

4.S.SVHN

Model

Maxout [17]

Prob maxout [47]

NIN [33]

DSN [30]

RCNN-128

RCNN-160

RCNN-I92

Multi-digit number

recognition [16]

No. of Paramo Testing Error (%)
Without Data Augmentation

>5 M 2.47

>5 M 2.39

l.98 M 2.35

l.98 M l.92

1.19 M 1.87
1.86 M 1.80
2.67 M 1.77

With Data Augmentation

>5 M 2.16

DropConnect (5 nets) [51] l.94

Table 5. Comparison with existing models on SYHN

SVHN consists of real-world house numbers collected
from Google Street View images. The dataset has two for­
mats and we used the second format. Totally there are
630,420 color images of size 32 x 32 pixels, which are split
into three sets. The training set contains 73,257 digits, the
testing set contains 26,032 digits and an extra set contains
531,131 additional less difficult samples. Multiple digits
may coexist in an image, and the task is to classify the cen­
ter digit. We followed the training procedure described in
[17]. 400 samples per class were randomly selected from
the training set, and 200 samples per class were randomly
selected from the extra set. These samples composed the
validation set. The other images in the training set and extra
set composed the training set. The validation set was only
used for tuning hyper-parameters and not used in training.

SVHN is much more difficult than MNIST due to large
variations of color and brightness. Local contrast normal­
ization was suggested to be an effective preprocessing step
[53] and was adopted by many models including the max­
out networks, NIN, DSN and DropConnect. We only sub­
tracted the mean value from each pixel. With this simple
preprocessing step, RCNN-128 outperformed the state-of­
the-art models without data augmentation and two models
with data augmentation (note that DropConnect used model
averaging of five networks). See Table 5 for details. RCNN-
128 had much fewer parameters than NIN (l.19 million ver­

sus l.98 million), and increasing K kept improving the ac­
curacy.

3373

5. Conclusion

Inspired by the fact of abundant recurrent synapses in
the brain, we proposed a recurrent convolutional neural net­
work (RCNN) for (static) object recognition. The basic idea
was to add recurrent connections within every convolutional
layer of the feed-forward CNN. This structure enabled the
units to be modulated by other units in the same layer, which
enhanced the capability of the CNN to capture statistical
regularities in the context of the object. The recurrent con­
nections increased the depth of the original CNN while kept
the number of parameters constant by weight sharing be­
tween layers. Experimental results demonstrated the advan­
tage of RCNN over CNN for object recognition. Over four
benchmark datasets, with fewer parameters RCNN outper­
formed the state-of-the-art models. Increasing the number
of parameters led to even better performance. This work
shows that it is possible to boost the performance of CNN
by incorporating more facts of the brain. It would be in­
teresting to see other fact of the brain to be integrated into
deep learning models in future.

Acknowledgements

We are grateful to the anonymous reviewers for their
valuable comments. This work was supported in part by the
National Basic Research Program (973 Program) of China
under Grant 2012CB316301, in part by the National Nat­
ural Science Foundation of China under Grant 61273023,
Grant 91420201, and Grant 61332007, in part by the Nat­
ural Science Foundation of Beijing under Grant 4132046,
and in part by the Tsinghua University Initiative Scientific
Research Program under Grant 20141080934.

References

[1] T. D. Albright and G. R. Stoner. Contextual influences on vi­

sual processing. Annual review of neuroscience, 25(1):339-

379, 2002.

[2] S. Behnke. Hierarchical Neural Networks for Image Inter­

pretation, volume 2766 of Lecture Notes in Computer Sci­

ence. Springer-Verlag, 2003.

[3] Y-L. Boureau, F. Bach, Y LeCun, and J. Ponce. Learn­

ing mid-level features for recognition. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2559-2566, 2010.

[4] G. A. Carpenter and S. Grossberg. A massively parallel

architecture for a self-organizing neural pattern recognition

machine. Computer vision, graphics, and image processing,

37(1):54-115, 1987.

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo­

lutional nets. In British Machine Vision Conference, 2014.

[6] P. Dayan and L. F. Abbott. Theoretical neuroscience. Cam­

bridge, MA: MIT Press, 2001.

[7] G. Deco and T. S. Lee. The role of early visual cortex in

visual integration: a neural model of recurrent interaction.

European Journal of Neuroscience, 20(4): 1089-1100, 2004.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei­

Fei. Imagenet: A large-scale hierarchical image database. In

IEEE Conference on Computer Vision and Pattern Recogni­

tion (CVPR), pages 248-255, 2009.

[9] D. Eigen, J. Rolfe, R. Fergus, and Y LeCun. Understand­

ing deep architectures using a recursive convolutional net­

work. In International Conference on Learning Representa­

tions (ICLR), 2014.

[10] J. L. Elman. Finding structure in time. Cognitive Science,

14(2):179-211, 1990.

[11] B. Fernandez, A. G. Pari os, and W. Tsai. Nonlinear dy­

namic system identification using artificial neural networks

(anns). In International Joint Conference on Neural Net­

works (IJCNN), pages 133-141, 1990.

[12] J. Fraser. A new visual illusion of direction. British Journal

of Psychiatry, 2:307-320, 1908.

[13] K. Fukushima. Neocognitron: A self-organizing neu-

ral network model for a mechanism of pattern recogni­

tion unaffected by shift in position. Biological cybernetics,

36(4):193-202, 1980.

[14] X. Glorot, A. Bordes, and Y Bengio. Deep sparse recti­

fier networks. In Proceedings of the 14th International Con­

ference on Artificial Intelligence and Statistics, volume 15,

pages 315-323, 2011.

[15] I. Goodfellow, A. Couville, and Y Bengio. Large-scale fea­

ture learning with spike-and-slab sparse coding. In Interna­

tional Conference on Machine Learning (ICML). 2012.

[16] I. J. Goodfellow, Y Bulatov, J. Ibarz, S. Arnoud, and V. Shet.

Multi-digit number recognition from street view imagery us­

ing deep convolutional neural networks. In International

Conference on Learning Representations (ICLR), 2014.

[17] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C.

Courville, and Y Bengio. Maxout networks. In Proceedings

of the 30th International Conference on Machine Learning

(ICML), pages 1319-1327, 2013.

[18] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami,

H. Bunke, and J. Schmidhuber. A novel connectionist system

for unconstrained handwriting recognition. IEEE Transac­

tions on Pattern Analysis and Machine Intelligence (PAM!),

31(5):855-868, 2009.

[19] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recogni­

tion with deep recurrent neural networks. In IEEE Interna­

tional Conference on Acoustics, Speech and Signal Process­

ing (ICASSP), pages 6645-6649, 2013.

[20] A. Graves and J. Schmidhuber. Offline handwriting recog­

nition with multidimensional recurrent neural networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 545-552, 2009.

[21] J. J. Hopfield. Neural networks and physical systems with

emergent collective computational abilities. Proceedings of

the National Academy of Sciences, 79(8):2554-2558, 1982.

[22] D. H. Hubel and T. N. Wiesel. Receptive fields of single neu­

rones in the cat's striate cortex. The Journal of physiology,

148(3):574, 1959.

3374

[23] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular

interaction and functional architecture in the cat's visual cor­

tex. The Journal of Physiology, 160(1): 106, 1962.

[24] M. I. Jordan. attractor dynamics and parallelism in a con­

nectionist sequential machine. pages 112-127. IEEE Press,

1990.

[25] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Computer Science Department,

University of Toronto, Tech. Rep, 2009.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

pages 1097-1105, 2012.

[27] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard,

W. Hubbard, and L. Jackel. Handwritten digit recognition

with a back-propagation network. In Advances in Neural In­

formation Processing Systems (NIPS), pages 396-404, 1990.

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural Compu­

tation, 1(4):541-551, 1989.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient­

based learning applied to document recognition. Proceed­

ings of the IEEE, 86(11):2278-2324, 1998.

[30] c.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply­

supervised nets. In Advances in neural information pro­

cessing systems (NIPS), Deep Learning and Representation

Learning Workshop, 2014.

[31] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolu­

tional deep belief networks for scalable unsupervised learn­

ing of hierarchical representations. In Proceedings of the

26th Annual International Conference on Machine Learning

(ICML), pages 609-616, 2009.

[32] T. S. Lee and D. Mumford. Hierarchical bayesian inference

in the visual cortex. Journal of the Optical Society of Amer­

ica A, 20(7):1434-1448, 2003.

[33] M. Lin, Q. Chen, and S. Yan. Network in network. In In­

ternational Conference on Learning Representations (ICLR),

2014.

[34] w. McCulloch and W. Pitts. A logical calculus of the ideas

immanent in nervous activity. Bulletin of Mathematical Bio­

physics, 5:115-133, 1943.

[35] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng. Reading digits in natural images with unsupervised fea­

ture learning. In NIPS workshop on Deep Learning and Un­

supervised Feature Learning, volume 2011, page 4, 2011.

[36] P. Pinheiro and R. Collobert. Recurrent convolutional neural

networks for scene labeling. In Proceedings of the 31st In­

ternational Conference on Machine Learning (ICML), pages

82-90, 2014.

[37] G. Y. Puskorius and L. A. Feldkamp. Neurocontrol of non­

linear dynamical systems with kalman filter trained recur­

rent networks. IEEE Transactions on Neural Networks,

5(2):279-297, 1994.

[38] M. Riesenhuber and T. Poggio. Hierarchical models of object

recognition in cortex. Nature Neuroscience, 2:1019-1025,

1999.

[39] F. Rosenblatt. Principles of neurodynamics; perceptrons and

the theory of brain mechanisms. Spartan Books Washington,

1962.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel

distributed processing: Explorations in the microstructure of

cognition, vol. 1. chapter Learning Internal Representations

by Error Propagation, pages 318-362. MIT Press, 1986.

[41] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y.
Ng. On random weights and unsupervised feature learning.

In Proceedings of the 28th International Conference on Ma­

chine Learning (ICML), pages 1089-1096, 2011.

[42] P. Series, J. Lorenceau, and Y. Fregnac. The silent surround

of V 1 receptive fields: theory and experiments. Journal of

physiology-Paris, 97(4):453-474, 2003.

[43] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carls­

son. Cnn features off-the-shelf: An astounding baseline for

recognition. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2014.

[44] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

absIl409.1556, 2014.

[45] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing nat­

ural scenes and natural language with recursive neural net­

works. In Proceedings of the 28th International Conference

on Machine Learning (ICML), pages 129-136, 2011.

[46] R. Socher, C. D. Manning, and A. Y. Ng. Learning continu­

ous phrase representations and syntactic parsing with recur­

sive neural networks. In Advances in neural information pro­

cessing systems (NIPS), Deep Learning and Representation

Learning Workshop, pages 1-9, 2010.

[47] J. T. Springenberg and M. Riedmiller. Improving deep neural

networks with probabilistic maxout units. In International

Conference on Learning Representations (ICLR), 2014.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neu­

ral networks from overfitting. Journal of Machine Learning

Research, 15:1929-1958, 2014.

[49] N. Srivastava and R. Salakhutdinov. Discriminative transfer

learning with tree-based priors. In Advances in Neural Infor­

mation Processing Systems (NIPS), pages 2094-2102, 2013.

[50] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, Y. Vanhoucke, and A. Rabi­

novich. Going deeper with convolutions. arXiv preprint

arXiv: 1409.4842, 2014.

[51] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Reg­

ularization of neural networks using dropconnect. In Pro­

ceedings of the 30th International Conference on Machine

Learning (ICML), pages 1058-1066, 2013.

[52] P. J. Werbos. Backpropagation through time: what it does

and how to do it. Proceedings of the IEEE, 78(10): 1550-

1560, 1990.

[53] M. D. Zeiler and R. Fergus. Stochastic pooling for regu­

larization of deep convolutional neural networks. In Inter­

national Conference on Learning Representations (ICLR),

2013.

[54] M. Zhu and C. Rozell. Visual nonclassical receptive field

effects emerge from sparse coding in a dynamical system.

PLOS Computational Biology, 9(8):e1003191, 2013.

3375

