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Abstract 

In recent years, the convolutional neural network (CNN) 

has achieved great success in many computer vision tasks. 

Partially inspired by neuroscience, CNN shares many prop­

erties with the visual system of the brain. A prominent dif­

ference is that CNN is typically a feed-forward architecture 

while in the visual system recurrent connections are abun­

dant. Inspired by this fact, we propose a recurrent CNN 

(RCNN) for object recognition by incorporating recurrent 

connections into each convolutional layer. Though the in­

put is static, the activities of RCNN units evolve over time 

so that the activity of each unit is modulated by the ac­

tivities of its neighboring units. This property enhances 

the ability of the model to integrate the context informa­

tion, which is important for object recognition. Like other 

recurrent neural networks, unfolding the RCNN through 

time can result in an arbitrarily deep network with a fixed 

number of parameters. Furthermore, the unfolded network 

has multiple paths, which can facilitate the learning pro­

cess. The model is tested on four benchmark object recog­

nition datasets: CIFAR-10, CIFAR-100, MNIST and SVHN. 

With fewer trainable parameters, RCNN outperforms the 

state-of-the-art models on all of these datasets. Increas­

ing the number of parameters leads to even better perfor­

mance. These results demonstrate the advantage of the re­

current structure over purely feed-forward structure for ob­

ject recognition. 

1. Introduction 

The past few years have witnessed the bloom of convo­
lutional neural network (CNN) in computer vision. Over 
many benchmark datasets CNN has substantially advanced 
the state-of-the-art accuracies of object recognition [26, 50, 

33, 5, 43]. For example, after training on 1.2 million im-
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ages from ImageNet [8], CNN [26] has achieved better per­
formance than handcraft features by a significant margin in 
classifying objects into 1000 categories. Furthermore, the 
pre trained CNN features on this dataset have been trans­
fered to other datasets to achieve remarkable results [5,43]. 

CNN is a type of artificial neural network, which origi­
nates from neuroscience dating back to the proposal of the 
first artificial neuron in 1943 [34]. In fact, CNN, as well 
as other hierarchical models including Neocognitron [13] 

and HMAX [38], is closely related to Hubel and Wiesel's 
findings about simple cells and complex cells in the pri­
mary visual cortex (Vl)[23, 22]. All of these models have 
purely feed-forward architectures, which can be viewed as 
crude approximations of the biological neural network in 
the brain. Anatomical evidences have shown that recurrent 
connections ubiquitously exist in the neocortex, and recur­
rent synapses typically outnumber feed-forward and top­
down (or feedback) synapses [6]. Due to the presence of 
recurrent and top-down synapses, object recognition is ac­
tually a dynamic process though the input is static. Specific 
functions of these synapses remain unclear, but it is gener­
ally believed that recurrent synapses play an important role 
in context modulation. The processing of visual signals is 
strongly modulated by their context [1]. Normally we do 
not perceive this effect without attention, but the effect gets 
prominent in perceptual illusions, e.g., the famous Fraser 
spiral illusion [12]. Context modulation is also observed 
in the responses of individual neurons in the visual system. 
For instance, the response properties of V 1 neurons can be 
altered in many ways by changing the context around their 
classical receptive fields (RFs) [42]. This phenomenon is 
suggested to be induced by recurrent synapses in VI [7, 54]. 

The context is important for object recognition (Figure 
1). A feed-forward model can only capture the context (e.g., 

the face in Figure 1) in higher layers where units have larger 
RFs, but this information cannot modulate the activities of 
units in lower layers responsible for recognizing smaller ob-
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Figure 1. Importance of context for object recognition. Without 

the context (face), it is hard to recognize the black curve in the 

middle area as a nose. 

jects (e.g., the nose in Figure 1). To utilize this informa­
tion, one strategy is to use top-down (or feedback) connec­
tions to propagate it downwards [32], which is adopted in 
the convolutional deep belief networks (CDBN) [31]. In 
this study, we take a different strategy, that is, use recurrent 
connections within the same layer of deep learning models. 
It is expected that, equipped with context modulation abil­
ity, these lateral connections may boost the performance of 
deep learning models. 

In the paper, we present a recurrent CNN for static ob­
ject recognition. The architecture is illustrated in Figure 
2, where both feed-forward and recurrent connections have 
local connectivity and shared weights among different loca­
tions. This architecture is very similar to the recurrent mul­
tilayer perceptron (RMLP) which is often used for dynamic 
control [11, 37] (Figure 2, middle). The main difference is 
that the full connections in RMLP are replaced by shared 
local connections, just as the difference between MLP [40] 

and CNN. For this reason, the proposed model is called the 
recurrent convolutional neural network (ReNN). 
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Figure 2. Illustration of the architectures of CNN, RMLP and 

RCNN. For each model two hidden layers are shown. 

The proposed RCNN was tested on several benchmark 
object recognition datasets. With fewer parameters, RCNN 
achieved better results than the state-of-the-art CNNs over 
all of these datasets, which validates the advantage of 
RCNN over CNN. The remaining content is organized as 
follows. Section 2 reviews some related work. Section 3 

describes the architecture of RCNN. Section 4 presents the 
experimental results and analysis. Finally, Section 5 con-

eludes the paper. 

2. Related work 

2.1. Convolutional neural networks 

Inspired by Rubel and Wiesel's breakthrough findings in 
cat [23][22], Fukushima [13] proposed a hierarchical model 
called Neocognitron, which consisted of stacked pairs of 
simple unit layer and complex unit layer. The first CNN 
was proposed by LeCun et al. [28][27]. Essentially CNN 
differs from the Neocognitron by incorporating the back­
propagation (BP) algorithm for learning the receptive fields 
of simple units. Since its birth, CNN has been characterized 
by local connections, weight sharing and local pooling. The 
first two properties enable the model to discover local in­
formative visual patterns with fewer adjustable parameters 
than MLP. The third property equips the network with some 
translation invariance. As suggested by Saxe et al. [41], the 
excellent performance of CNN can be largely attributed to 
these properties as certain structures with random weights 
could also achieve good results. 

Over the past years, many techniques have have been de­
veloped for improving the performance of CNN. The recti­
fied linear function [14] becomes the most commonly used 
activation function due to its resistance to the notorious gra­
dient vanishing effect in the BP algorithm. Dropout [48] is 
an effective technique to prevent neural networks from over­
fitting in training. To leverage the model averaging ability 
of dropout, Goodfellow et al. [17] used max pooling over 
feature channels as the activation function. To strengthen 
the nonlinearity of convolutional units, Lin et al. [33] pro­
posed the network in network (NIN) structure, in which 
convolution was replaced by the local multilayer perceptron 
(MLP) [39] sliding over input feature maps. To prevent NIN 
from over-fitting, the fully connected layers were replaced 
by the global average pooling layer. Simonyan and Zisser­
man [44] used 3 x 3 convolutions to build very deep net­
works, considering that a stack of small filters have stronger 
nonlinearity than a large filter with the same amount of pa­
rameters. Szegedy et al. [50] proposed the multi-scale in­
ception modules and built the GoogLeNet based on them. 
Small filters were also favored in this model. CNN is a 
computation-intensive model and is usually hard to run on 
CPU. The use of GPU has greatly facilitated the training and 
testing of CNN on large-scale datasets. The first successful 
GPU implementation of CNN refers to the AlexNet [26] 

which won the recognition competition in the ImageNet [8] 

Large Scale Visual Recognition Challenge (lLSVRC) 2012. 

Since then, most submissions to this annual competition 
were based on GPU implemented CNN. 
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2.2. Recurrent neural networks 

Recurrent neural network (RNN) has a long history in 
the artificial neural network community [4, 21, 11, 37, 10, 
24], but most successful applications refer to the modeling 
of sequential data such as handwriting recognition [18] and 
speech recognition[19]. A few studies about RNN for static 
visual signal processing are briefly reviewed below. 

In [20] a multi-dimensional RNN (MDRNN) is proposed 
for off-line handwriting recognition. MDRNN has a di­
rected structure in that it treats the image as 2D sequen­
tial data. Furthermore, MDRNN has a single hidden layer, 
which cannot produce the feature hierarchy as CNN. 

In [2] a hierarchical RNN called the Neural Abstraction 
Pyramid (NAP) is proposed for image processing. NAP is 
a biology-inspired architecture with both vertical and lat­
eral recurrent connectivity, through which the image in­
terpretation is gradually refined to resolve visual ambigu­
ities. In designing the structure, biological plausibility is 
stressed. For example, it employs excitatory and inhibitory 
units, which are not considered in most deep learning mod­
els. It is unclear whether these more biologically plausible 
techniques would make NAP more effective than state-of­
the-art deep learning models. More importantly, though the 
general framework of NAP has recurrent and feedback con­
nections, for object recognition only a feed-forward version 
was tested. The recurrent NAP was used for other tasks 
such as image reconstruction. 

Besides NAP, top-down connections have been used in 
some other hierarchical models. Lee et at. [31] proposed 
CDBN for unsupervised feature learning. During inference 
the information in the top layer could be propagated to the 
bottom layer through the intermediate layers between them. 
Different from this layer-by-layer propagation idea, Pin­
heiro and Coli obert [36] used extra connections from the 
top layer to the bottom layer of a CNN directly. This model 
was used for scene labeling. These models are different 
from RCNN where recurrent connections exist within the 
same layer, not between layers. 

There is an interesting relationship between RCNN and 
some sparse coding models [15] where fixed-point updates 
are used in inference. The iterative optimization procedures 
implicitly define recurrent neural networks. Note that su­
pervised learning techniques can be incorporated into the 
unsupervised learning framework of sparse coding models 
[3]. But these techniques have not made the sparse coding 
models competitive with CNN for object recognition. 

Finally, our model is also related to the recursive neu­
ral network [46], in which a recursive layer is unfolded 
to a stack of layers with tied weights. Socher et at. [45] 
used a recursive neural network to perform scene parsing. 
Eigen et at. [9] studied the factors that influence the per­
formance of CNN by employing a recursive convolutional 
neural network, which is equivalent to the time-unfolded 

version of RCNN but without feed-forward input to each 
unfolded layer. 

3. RCNN Model 

3.1. Recurrent convolutional layer 

The key module of RCNN is the recurrent convolutional 
layer (RCL). The states of RCL units evolve over discrete 
time steps. For a unit located at (i, j) on the kth feature map 
in an RCL, its net input Zijk(t) at time step t is given by: 

Zijk(t) = (w�f u(i,j)(t) + (wkf x(i,jl(t - 1) + bk· (1) 

In the equation u(i,j)(t) and x(i,j)(t - 1) denote the feed­
forward and recurrent input, respectively, which are the vec­
torized patches centered at (i, j) of the feature maps in the 

previous and current layer, w� and wk denote the vector­
ized feed-forward weights and recurrent weights, respec­
tively, and bk is the bias. The first term in (1) is used in 
standard CNN and the second term is induced by the recur­
rent connections. 

The activity or state of this unit is a function of its net 
input 

(2) 

where! is the rectified linear activation function 

!(Zijk(t)) = max(zijk(t), 0), (3) 

and g is the local response normalization (LRN) function 
[26] 

!ijk(t) g(fijk (t)) = -(---nu-. n-(K'::"":, k"-'-+'-'-N-'-/2-) ---)-:0/3 
1 + N L (fijk,)2 

k' =max(O,k- N /2) 

(4) 

where K is the total number of feature maps in the cur­
rent layer. Note that in the denominator in (4) the sum runs 
over N feature maps at the same location (i, j) (usually 
N < K), and ex and (3 are constants controlling the am­
plitude of normalization. In addition !(Zijk(t)) has been 
abbreviated as !ijk (t). LRN mimics the lateral inhibition 
in the cortex, where different features compete for large re­
sponses. LRN is used in our model for preventing the states 
from exploding. 

Equations (1) and (2) describe the dynamic behavior of 
the RCL. Unfolding this layer for T time steps results in a 
feed-forward subnetwork of depth T + 1. See the top left 
of Figure 3 for an example with T = 3. While the recur­
rent input evolves over iterations, the feed-forward input re­
mains the same in all iterations. When t = 0 only the feed­
forward input is present. The subnetwork has several paths 
from the input layer to the output layer. The longest path 
goes through all unfolded recurrent connections (therefore 
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Figure 3. The overall architecture of RCNN. Left: An RCL is unfolded for T = 3 time steps, leading to a feed ... forward subnetwork with 

the largest depth of 4 and the smallest depth of 1. At t = 0 only feed ... forward computation takes place. Right: The RCNN used in this 

paper contains one convolutional layer, four RCLs, three max pooling layers and one softmax layer. 

length = T + 1), while the shortest path goes through the 
feed ... forward connection only (therefore length = 1). The 
effective RF of an RCL unit in the feature maps of the pre ... 
vious layer expands when the iteration number increases. If 
both input and recurrent filters in equation (1) have square 
shapes in each feature map, then the effective RF of an RCL 
unit is also square, whose side length is (Lrec-1)T + L feed, 
where L feed and Lrec denote the side lengths of the input 
and recurrent filters, respectively. 

3.2. Overall architecture 

RCNN contains a stack of RCLs, optionally interleaved 
with max pooling layers. See Figure 3 for the architec ... 
ture used in this work. To save computation, layer 1 is the 
standard feed ... forward convolutional layer without recurrent 
connections, followed by max pooling. On top of this, four 
RCLs are used with a max pooling layer in the middle. Be ... 
tween neighboring RCLs there are only feed ... forward con ... 
nections. Both pooling operations have stride 2 and size 3. 
The output of the fourth RCL follows a global max pooling 
layer, which outputs the maximum over every feature map, 
yielding a feature vector representing the image. This is 
different from the model in [26] where fully connected lay ... 

ers are used or the models in [33, 50] where global average 
pooling is used. Finally a softmax layer is used to classify 
the feature vectors to C categories whose output is given by 

(k = 1,2, ... , C) (5) 

where Yk is the predicted probability belonging to the kth 
category, and x is the feature vector generated by the 
global max pooling. Training is performed by minimizing 
the cross ... entropy loss function using the backpropagation 
throught time (BPTT) algorithm [52]. This is equivalent to 
using the standard BP algorithm on the time ... unfolded net ... 
work. The final gradient of a shared weight is the sum of its 
gradients over all time steps. 

If we unfold the recurrent connections for T time steps, 
the model becomes a very deep feed ... forward network with 
4( T + 1) + 2 parameterized layers, where T + 1 is the depth 
of each RCL. But 4(T + 1) + 2 is only the length of the 
longest path from the input layer to the output layer, and 
there are many other paths with different lengths. Among 
them the shortest path has length 6, which is the feed ... 
forward path bypassing all recurrent connections. 
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3.3. Discussion 

From the computational perspective, the recurrent con­
nections in RCNN offer several advantages. First, they en­
able every unit to incorporate context information in an ar­
bitrarily large region in the current layer. In fact, as the time 
steps increase, the state of every unit is influenced by other 
units in a larger and larger neighborhood in the current layer 
(equation (1»; as a consequence, the size of regions that 
the unit can "watch" in the input space also increases. In 
CNN, the size of the RFs of the units in the current layer 
is fixed, and "watching" a larger region is only possible for 
units in higher layers. But unfortunately the context seen 
by higher-level units cannot influence the states of the units 
in the current layer without top-down connections. Sec­
ond, the recurrent connections increase the network depth 
while keep the number of adjustable parameters constant by 
weight sharing. This is consistent with the trend of modern 
CNN architecture: going deeper with relatively small num­
ber of parameters [33, 44, 50]. Note that simply increasing 
the depth of CNN by sharing weights between layers can 
result in the same depth and the same number parameters 
as RCNN, but such a model may not compete with RCNN 
in performance, as verified in our experiments (see Section 
4.2.1). We attribute this fact to the difficulty in learning 
such a deep model. Then here comes the third advantage 
of RCNN - the time-unfolded RCNN is actually a CNN 
with multiple paths between the input layer to the output 
layer (Figure 3), which may facilitate the learning. On one 
hand, the existence of longer paths makes it possible for the 
model to learn highly complex features. On the other hand, 
the existence of shorter paths may help gradient backprop­
agation during training. Multi-path is also used in [50, 30], 
but there extra objective functions are used in hidden layers 
to alleviate the difficulty in training deep networks, which 
are not used in RCNN. 

3.4. Implementation 

Many hyper-parameters may affect the performance of 
RCNN such as the numbers of feature maps and the filter 
size in each layer. We did not explore the best configura­
tion. Instead, we limited the search in a constrained hyper­
parameter space. First, layers 1 to 5 were constrained to 
have the same number of feature maps K. As a conse­
quence the model can be denoted by RCNN-K. For exam­
ple, RCNN-96 indicates that each of the five layers has 96 
feature maps. Second, the feed-forward filter size in layer 1 
was 5 x 5, the feed-forward and recurrent filter sizes in lay­
ers 2 to 4 were all 3 x 3. So the total number of parameters of 
RCNN-K was approximately 72K2, which only accounted 
for the weights in RCLs because other layers had far fewer 
parameters. 

The hyper-parameters of LRN in (4) were set as a = 

0.001, f3 = 0.75 and N = K/8 + 1. Dropout [48] was used 

after each RCL except layer 5, which was connected to the 
softmax layer. If the RCL was followed by a pooling layer, 
dropout was placed after pooling. 

4. Experiments 
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Figure 4. The subnetworks used to construct rCNNs. They are 

used to replace the RCLs in RCNN. The layers surrounded by the 

dotted box have tied weights. From left to right, the subnetworks 

correspond to the RCL with one, two and three iterations, respec­

tively. 

4.1. Overall settings 

The RCNN was implemented using cuda-convnet2 [26] 
developed by Alex krizhevsky. Experiments were run 
on two GPUs with data parallelism. The models were 
evaluated on four benchmark object classification datasets, 
CIFAR-lO [25], CIFAR-lOO [25], MNIST [29] and SVHN 
[35]. We found that a few iterations of the dynamic process 
of RCNN were able to produce excellent results. Except on 
CIFAR -10, where different number of iterations were com­
pared, on the other three datasets, the iteration number was 
set to 3. 

The training procedure followed [26]. The model was 
trained using the BPTT algorithm in combination with 
stochastic gradient descent. The initial learning rate was set 
heuristically and annealed according to a schedule predeter­
mined on the validation set. When the accuracy stopped im­
proving, the learning rate was decreased to its 1/10. Three 
annealing steps were used so that the final learning rate was 
1/1000 of the initial value. The momentum for all datasets 
were fixed at 0.9. Weight decay was used as another reg­
ularizer besides dropout. All weights of the model were 
set to have the same decay term. Dropout probabilities and 
weight decay rate were tuned. For CIFAR-lO, CIFARlOO 
and SVHN, the images were preprocessed by removing the 
per-pixel mean value calculated over the training set. For 
MNIST the raw images were used as input. 
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4.2. C IFAR-IO 

The CIFAR-I0 dataset [26] consists of 60000 color im­
ages of 32 x 32 pixels in 10 classes. The total dataset was 
split into 50000 training images and 10000 testing images. 
The last 10000 training images were used for validation. 
After the hyper-parameters were determined, the model was 
trained from scratch on all 50000 training images. 

4.2.1 Comparison with baseline models 

Error (%) Model No. of Paramo 
Training Testing 

rCNN-96 (1 iter) 0.67 M 4.61 12.65 

rCNN-96 (2 iters) 0.67 M 2.26 12.99 

rCNN-96 (3 iters) 0.67 M 1.24 14.92 

WCNN-128 0.60 M 3.45 9.98 

RCNN-96 (1 iter) 0.67 M 4.99 9.95 

RCNN-96 (2 iters) 0.67 M 3.58 9.63 

RCNN-96 (3 iters) 0.67 M 3.06 9.31 

Table 1. Comparison with the baseline models on CIFAR-lO 

We analyzed the properties of RCNN by comparing it 
with two baseline models. The first baseline model was con­
structed by removing the recurrent connections in RCNN, 
which becomes a conventional CNN. For fair comparison, 
we used more feature maps in each layer to make its number 
of parameters approximately the same as RCNN. To em­
phasize this point, the model was denoted by WCNN (wide 
CNN). Note that WCNN was similar to the VGG very deep 
model [44] as most layers used 3 x 3 filters. The second 
baseline model was constructed by removing the recurrent 
connections in each RCL of RCNN but adding a cascade 
of duplicated convolutional layers. This was called recur­
sive CNN [9] or rCNN for short. The cascade of duplicated 
convolutional layers can be understood as the time-unfolded 
version of RCL starting at t = 1 without feed-forward input 
(Figure 4). In other words in iterations of RCNN, the feed­
forward input (the first term in equation (1» was always 
there, but in iterations of rCNN it was absent. Please com­
pare the top-left of Figure 3 and Figure 4. Note that rCNN 
had exactly the same number of parameters as RCNN. 

RCNN-96 was used for comparison. Because cuda­
convnet2 [26] requires the number of filters to be multi­
ples of 16, we selected WCNN-128 (0.6 million parame­
ters) which has the closest complexity with RCNN-96 and 
rCNN-96 (0.67 million parameters). For both RCNN and 
rCNN, 1, 2 and 3 iterations were tested. Table 1 shows the 
comparison results. 

WCNN-128 achieved much better performance than 
rCNN in terms of testing accuracy. In fact, WCNN-128 al­
ready surpassed most of the models shown in Table 2, which 
validates the effectiveness of extensive use of 3 x 3 filters 

[44]. However, WCNN was significantly outperformed by 
RCNN with a few iterations. 

More iterations in RCNN led to both lower training error 
and lower testing error, and more iterations in rCNN led 
to lower training error but higher testing error (Table 1). 
In fact, the training errors of the three rCNNs were even 
lower than the corresponding RCNNs. Clearly, overfitting 
has occurred in rCNN, a phenomenon also reported in [9]. 
The comparison indicates that the mUlti-path structure of 
RCNN is less prone to overfitting than the chain structure 
of rCNN. 

4.2.2 Comparison with state-of-the-art models 

Model No. of Paramo Testing Error (%) 
Without Data Augmentation 

Maxout [17] >5 M 11.68 

Prob maxout [47] >5 M 11.35 

NIN [33] 0.97 M 10.41 

DSN [30] 0.97 M 9.69 

RCNN-96 0.67 M 9.31 
RCNN-128 1.19 M 8.98 
RCNN-160 1.86 M 8.69 
RCNN-96 (no dropout) 0.67 M 13.56 

NIN (no dropout) [33] 0.97 M 14.51 

With Data Augmentation 

Prob maxout [47] >5 M 9.39 

Maxout [17] >5 M 9.38 

DropConnect (12 nets) [51] 9.32 

NIN [33] 0.97 M 8.81 

DSN [30] 0.97 M 7.97 

RCNN-96 0.67 M 7.37 
RCNN-128 1.19 M 7.24 
RCNN-160 1.86 M 7.09 

Table 2. Comparison with existing models on CIFAR-lO 

We then compared RCNN with the state-of-the-art mod­
els on this dataset. Three models with different K's were 
tested: RCNN-96, RCNN-128 and RCNN-160. The num­
ber of iterations was set to 3. All of them outperformed ex­
isting models, and the performance was steadily improved 
with more features maps (Table 2). Among the existing 
models for comparison NIN and DSN had the fewest pa­
rameters, about 1 million. RCNN-96 had even fewer pa­
rameters, 0.67 million, but achieved better results. Note 
that the maxout networks, NIN and DSN pre-processed the 
data with global contrast normalization and ZCA whiten­
ing, while we simply subtracted the per-pixel mean value 
from the data. 

Dropout played an important role for RCNN to achieve 
these remarkable results. Without dropout, the error rate 
of RCNN-96 was 13.56%, much higher than 9.31% with 
dropout. But this error rate was lower than that of NIN with­
out dropout (14.51 %). 

3372 



We also tested RCNN when data was augmented with 
translations and horizontal reflections as in [17]. In the 
training phase, crops of 24 x 24 pixels were randomly ex­
tracted from the original image and randomly horizontally 
reflected. In the testing phase, nine crops were uniformly 
extracted from the image so that the interval between neigh­
boring crops was four pixels. All of the nine outputs were 
averaged to give the final output. RCNN-96 achieved sig­
nificantly better result than the state-of-the-art models using 
much fewer parameters. And again, simply increasing K 
led to even better results. See Table 2 for details. 

4.3. C IFAR-IOO 

Model No. of Par am. Testing Error (%) 
Maxout [17] >5 M 38.57 

Prob maxout [47] >5 M 38.14 

Tree based priors [49] 36.85 

NIN [33] 0.98 M 35.68 

DSN [30] 0.98 M 34.57 

RCNN-96 0.68 M 34.18 
RCNN-128 1.20 M 32.59 
RCNN-160 1.87 M 31.75 

Table 3. Comparison with existing models on CIFAR-IOO 

CIFAR-100 has 100 classes of images in the same for­
mat as CIFAR-lO. The two datasets have the same size, 
so the number of images in each CIFAR-100 class is only 
1/10 of that in CIFAR-lO. We tested three RCNNs without 
data augmentation. The same setting as in CIFAR-I0 was 
adopted here without further tuning the hyper-parameters. 
Again RCNN-96 outperformed the state-of-the-art models 
with fewer parameters, and the performance kept improv­
ing by increasing K. Table 3 shows the comparison result. 

4.4. MN IST 

Model No. of Paramo Testing Error (%) 
NIN [33] 0.35 M 0.47 

Maxout [17] 0.42 M 0.45 

DSN [30] 0.35 M 0.39 

RCNN-32 0.08 M 0.42 

RCNN-64 0.30 M 0.32 
RCNN-96 0.67 M 0.31 
Table 4. Comparison with existing models on MNIST 

MNIST [29] is one of the most well known datasets in 
the machine learning community. It consists of hand writ­
ten digits of 0 to 9. There are 60000 training images and 
10000 testing images. The images are in gray scale with 
size 28 x 28 pixels. We compared RCNN with other mod­
els without data augmentation and model averaging tech­
niques. This benchmark is much easier than the two CI­
FAR datasets, and we preferred smaller K s. The results are 

shown in Table 4. RCNN-64 outperformed other models us­
ing only 0.30 million parameters. In contrast, 0.42 million 
parameters were used in Maxout networks and 0.35 million 
parameters were used in NIN and DSN. No preprocessing 
was used by RCNN while the other models used global con­
trast normalization and ZCA whitening. 

4.S.SVHN 

Model 

Maxout [17] 

Prob maxout [47] 

NIN [33] 

DSN [30] 

RCNN-128 

RCNN-160 

RCNN-I92 

Multi-digit number 

recognition [16] 

No. of Paramo Testing Error (%) 
Without Data Augmentation 

>5 M 2.47 

>5 M 2.39 

l.98 M 2.35 

l.98 M l.92 

1.19 M 1.87 
1.86 M 1.80 
2.67 M 1.77 

With Data Augmentation 

>5 M 2.16 

DropConnect (5 nets) [51] l.94 

Table 5. Comparison with existing models on SYHN 

SVHN consists of real-world house numbers collected 
from Google Street View images. The dataset has two for­
mats and we used the second format. Totally there are 
630,420 color images of size 32 x 32 pixels, which are split 
into three sets. The training set contains 73,257 digits, the 
testing set contains 26,032 digits and an extra set contains 
531,131 additional less difficult samples. Multiple digits 
may coexist in an image, and the task is to classify the cen­
ter digit. We followed the training procedure described in 
[17]. 400 samples per class were randomly selected from 
the training set, and 200 samples per class were randomly 
selected from the extra set. These samples composed the 
validation set. The other images in the training set and extra 
set composed the training set. The validation set was only 
used for tuning hyper-parameters and not used in training. 

SVHN is much more difficult than MNIST due to large 
variations of color and brightness. Local contrast normal­
ization was suggested to be an effective preprocessing step 
[53] and was adopted by many models including the max­
out networks, NIN, DSN and DropConnect. We only sub­
tracted the mean value from each pixel. With this simple 
preprocessing step, RCNN-128 outperformed the state-of­
the-art models without data augmentation and two models 
with data augmentation (note that DropConnect used model 
averaging of five networks). See Table 5 for details. RCNN-
128 had much fewer parameters than NIN (l.19 million ver­

sus l.98 million), and increasing K kept improving the ac­
curacy. 
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5. Conclusion 

Inspired by the fact of abundant recurrent synapses in 
the brain, we proposed a recurrent convolutional neural net­
work (RCNN) for (static) object recognition. The basic idea 
was to add recurrent connections within every convolutional 
layer of the feed-forward CNN. This structure enabled the 
units to be modulated by other units in the same layer, which 
enhanced the capability of the CNN to capture statistical 
regularities in the context of the object. The recurrent con­
nections increased the depth of the original CNN while kept 
the number of parameters constant by weight sharing be­
tween layers. Experimental results demonstrated the advan­
tage of RCNN over CNN for object recognition. Over four 
benchmark datasets, with fewer parameters RCNN outper­
formed the state-of-the-art models. Increasing the number 
of parameters led to even better performance. This work 
shows that it is possible to boost the performance of CNN 
by incorporating more facts of the brain. It would be in­
teresting to see other fact of the brain to be integrated into 
deep learning models in future. 
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