
Understanding the Disharmony between Dropout and Batch Normalization by

Variance Shift

Xiang Li∗1,2, Shuo Chen1, Xiaolin Hu†3 and Jian Yang‡1

1PCALab, Nanjing University of Science and Technology 2Momenta 3Tsinghua University

Abstract

This paper first answers the question “why do the two

most powerful techniques Dropout and Batch Normaliza-

tion (BN) often lead to a worse performance when they are

combined together in many modern neural networks, but

cooperate well sometimes as in Wide ResNet (WRN)?” in

both theoretical and empirical aspects. Theoretically, we

find that Dropout shifts the variance of a specific neural

unit when we transfer the state of that network from train-

ing to test. However, BN maintains its statistical variance,

which is accumulated from the entire learning procedure, in

the test phase. The inconsistency of variances in Dropout

and BN (we name this scheme “variance shift”) causes the

unstable numerical behavior in inference that leads to er-

roneous predictions finally. Meanwhile, the large feature

dimension in WRN further reduces the “variance shift” to

bring benefits to the overall performance. Thorough experi-

ments on representative modern convolutional networks like

DenseNet, ResNet, ResNeXt and Wide ResNet confirm our

findings. According to the uncovered mechanism, we get

better understandings in the combination of these two tech-

niques and summarize guidelines for better practices.

1. Introduction

Srivastava et al. [28] brought Dropout as a simple way to

prevent neural networks from overfitting. It has been proved

to be significantly effective over a large range of machine

learning areas, such as image classification [26, 2], speech

∗Xiang Li, Shuo Chen and Jian Yang are with PCA Lab, Key Lab of

Intelligent Perception and Systems for High-Dimensional Information of

Ministry of Education, and Jiangsu Key Lab of Image and Video Under-

standing for Social Security, School of Computer Science and Engineering,

Nanjing University of Science and Technology, China. Xiang Li is also a

visiting scholar at Momenta. Email: xiang.li.implus@njust.edu.cn
†Xiaolin Hu is with the Tsinghua National Laboratory for Information

Science and Technology (TNList) Department of Computer Science and

Technology, Tsinghua University, China.
‡Corresponding author.

𝑋 = 𝑥 ෠𝑋 = 𝑋−𝐸𝑀𝑜𝑣𝑖𝑛𝑔 (𝑋)𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 +𝜀𝑋
𝑉𝑎𝑟𝑇𝑟𝑎𝑖𝑛 𝑋 = 1𝑝𝑉𝑎𝑟𝑇𝑒𝑠𝑡 𝑋 = 1

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸(1𝑝)𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸(1𝑝)
𝑥~𝒩(0,1)

Train Mode

Test  Mode

𝑋 = 𝑎 1𝑝 𝑥 𝑋𝑥~𝒩(0,1) 𝜇 = 𝐸 𝑋 , 𝜎2 = 𝑉𝑎𝑟 𝑋 , ෠𝑋 = 𝑋 − 𝜇𝜎2 + 𝜀𝐸𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 ← 𝐸(𝜇) 𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 ← 𝐸(𝜎2)
Dropout 𝑎~Bernoulli(𝑝) BN

0 20 40 60 80 100

BN layer index on DenseNet trained on CIFAR100

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
a
x
(

re
a
l_
va

r i
m
ov
in
g_

va
r i
,m

ov
in
g_

va
r i

re
a
l_
va

r i
)

Test Acc 77.42%, No Dropout in each bottleneck
Test Acc 68.55%, Dropout 0.5 in each bottleneck

Figure 1. Up: a simplified mathematical illustration of “variance

shift”. In test mode, the neural variance of X is different from

that in train mode caused by Dropout, yet BN attempts to treat that

variance as the popular statistics accumulated from training. Note

that p denotes the Dropout retain ratio and a comes from Bernoulli

distribution which has probability p of being 1. Down: variance

shift in experimental statistics on DenseNet trained on CIFAR100

dataset. The curves are both calculated from the same training

data. “moving var
i
” is the moving variance (take its mean value

instead if it is a vector) that the i-th BN layer accumulates during

the entire learning, and “real vari” stands for the real variance of

neural response before the i-th BN layer in inference.

recognition [9, 5, 3] and even natural language processing

[18, 15]. Before the birth of Batch Normalization (BN),

it became a necessity of almost all the state-of-the-art net-

works and successfully boosted their performances against

overfitting risks, despite its amazing simplicity.

Ioffe and Szegedy [17] demonstrated BN, a powerful

2682



skill that not only sped up all the modern architectures but

also improved upon their strong baselines by acting as reg-

ularizers. Therefore, BN has been adopted in nearly all the

recent network structures [31, 30, 13, 34] and demonstrates

its great practicability and effectiveness.

However, the above two powerful methods always fail

to obtain an extra reward when combined together prac-

tically [19]. In fact, a modern network even performs

worse and unsatisfactorily when it is equipped with BN

and Dropout simultaneously in their bottleneck blocks.

[17] had already realized that BN eliminates the need for

Dropout in some cases, and thus conjectured that BN pro-

vides similar regularization benefits as Dropout intuitively.

More evidences are provided in recent architectures such as

ResNet/PreResNet [10, 11], ResNeXt [32], DenseNet [16],

where the best performances are all obtained by BN with

the absence of Dropout. Interestingly, a recent study Wide

ResNet (WRN) [33] show that it is positive for Dropout to

be applied in the WRN’s bottleneck blocks with a very large

feature dimension. So far, previous clues leave us a mys-

tery about the confusing and complicated relations between

Dropout and BN. Why do they conflict in most of the com-

mon modern architectures? Why do they cooperate friendly

sometimes as in WRN?

We discover the key to understand the disharmony be-

tween Dropout and BN is the inconsistent behaviors of neu-

ral variance [12] during the switch of networks’ state. Con-

sidering one neural response X as illustrated in Fig. 1, when

the state changes from training to test, Dropout will scale

the response by its Dropout retain ratio (i.e. p) that actu-

ally changes the neural variance as in learning. However,

BN still maintains its statistical moving variance of X , as in

most of the common Deep Learning toolboxes’ (e.g., ten-

sorflow [1], pytorch [24] and mxnet [4]) implementations.

This mismatch of variance could lead to a instability (see

red curve in Fig. 1). As the signals go deeper, the numer-

ical deviation on the final predictions may amplify, which

drops the system’s peformance. We name this scheme as

“variance shift” for simplicity. Instead, without Dropout in

every bottleneck block, the real neural variances in infer-

ence appear very closely to the moving ones accumulated

by BN (see blue curve in Fig. 1), which is also preserved

with a higher test accuracy.

Theoretically, we deduced the “variance shift” under two

general conditions in modern networks’ bottleneck blocks,

and found a satisfied explanation for the aforementioned

mystery between Dropout and BN. Furthermore, a large

range of experimental statistics from four representative

modern convolutional networks (i.e., PreResNet, ResNeXt,

DenseNet, Wide ResNet) on CIFAR10/100 datasets verified

our findings. Finally, we summarized the understandings

based on our theory and experiments, which can serve as

guidelines in practice.

2. Related Work and Preliminaries

Dropout [28] can be interpreted as a way of regulariz-

ing a neural network by adding noise to its hidden units.

Specifically, it involves multiplying hidden activations by

Bernoulli distributed random variables which take the value

1 with probability p (0 ≤ p ≤ 1) and 0 otherwise. Im-

portantly, the test scheme is quite different from training.

During training, the information flow goes through the dy-

namic sub-network. In the test phase, the neural responses

are scaled by the Dropout retain ratio. In order to approxi-

mate an equally weighted geometric mean of the predictions

of an exponential number of learned models that share pa-

rameters. Consider a feature vector x = (x1 . . . xd) with

channel dimension d, xk = akxk(k = 1 . . . d) during the

training phase if we apply Dropout on x, where ak ∼ P

comes from the Bernoulli distribution [7]:

P (ak) =

{
1− p, ak = 0
p, ak = 1

, (1)

and a = (a1 . . . ad) is a vector of independent Bernoulli

random variables. At test time for Dropout, one should

scale down the weights by multiplying them by a factor of

p. As introduced in [28], another way to achieve the same

effect is to scale up the retained activations by multiplying

by 1
p

at training time and not modifying the weights at test

time. It is more popular on practical implementations, thus

we employ this formula of Dropout in both analyses and

experiments. Therefore, the hidden activation in the train-

ing phase is: x̂k = ak
1
p
xk, whilst in inference it becomes

simple like: x̂k = xk.

Batch Normalization (BN) [17] proposes a determinis-

tic information flow by normalizing each neuron into zero

mean and unit variance. Considering values of x (for clar-

ity, x ≡ xk) over a mini-batch: B = {x(1)...(m)} with m

instances, we have the form of “normalize” part:

µ =
1

m

m∑

i=1

x(i), σ2 =
1

m

m∑

i=1

(x(i) − µ)2, x̂(i) =
x(i) − µ√
σ2 + ǫ

,

(2)

where µ and σ2 participate in the backpropagation. Note

that we do not consider the “scale and shift” part in BN be-

cause the key of “variance shift” exists in its “normalize”

part. The normalization of activations that depends on the

mini-batch allows efficient training, but is neither necessary

nor desirable during inference [25]. Therefore, BN accu-

mulates the moving averages of neural means and variances

during learning to track the accuracy of a model as it trains:

EMoving(x)← EB(µ), V arMoving(x)← E
′

B(σ
2), (3)

where EB(µ) denotes the expectation of µ from multiple

training mini-batches B and E
′

B(σ
2) denotes the expecta-

tion of the unbiased variance estimate (i.e., m
m−1 · EB(σ

2))

2683



Dropout BN

Dropout Convolution BN

𝚾
𝚾

(a)

(b) 𝑋
𝑋

𝑋 = 𝑑𝑚 Χ ෠𝑋 = 𝑋−𝐸𝑀𝑜𝑣𝑖𝑛𝑔 [𝑋]𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 +𝜀𝑋
𝑉𝑎𝑟𝑇𝑟𝑎𝑖𝑛 𝑋 = 1 − 𝑑/𝑚𝑉𝑎𝑟𝑇𝑒𝑠𝑡 𝑋 = 1 − 𝑑/𝑚 2

𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸 1 − 𝑑/𝑚𝑉𝑎𝑟𝑀𝑜𝑣𝑖𝑛𝑔 𝑋 = 𝐸 1 − 𝑑/𝑚
Χ

Χ~𝑁(0,1)
Χ~𝑁(0,1) ≠

... ...

... ...

Figure 2. Two general cases for analyzing variance shift in modern

networks’ bottleneck blocks.

over multiple training mini-batches. They are all obtained

by implementations of moving averages [17] and are fixed

for linear transform during inference:

x̂ =
x− EMoving(x)√
V arMoving(x) + ǫ

. (4)

3. Theoretical Analyses

From the preliminaries, one can notice that Dropout only

ensures an “equally weighted geometric mean of the pre-

dictions of an exponential number of learned models” by

the approximation from its test policy, as introduced in the

original paper [28]. This scheme poses the variance of the

hidden units unexplored in a Dropout model. Therefore, the

central idea is to investigate the variance of the neural re-

sponse before a BN layer, where the Dropout is previously

applied. Following [8], we first start by studying the lin-

ear regime. Further, if a Dropout layer is applied after the

last BN layer in this bottleneck block, it will be followed by

the first BN layer in the next bottleneck block. Therefore,

we only need to consider the cases where Dropout comes

before BN. Meanwhile, we also need to consider the num-

ber of convolutional layers between Dropout and BN. 0 or

1 convolutional layer is obviously necessary for investiga-

tions, yet 2 or more convolutional layers can be attributed to

the 1 case via similar analyses. To conclude, we have two

cases generally, as shown in Fig. 2. Importantly, the Wide

ResNet with Dropout exactly follows the case (b) formula-

tion.

In case (a), the BN layer is directly subsequent to the

Dropout layer and we only need to consider one neural re-

sponse X = ak
1
p
xk, where k = 1 . . . d in training phase

and X = xk in test phase.

In case (b), the feature vector x = (x1 . . . xd) is passed

into a convolutional layer (similar deduction can be con-

ducted here if it is a fully connected layer) to form the neu-

ral response X . We also regard its corresponding weights

to be w = (w1 . . . wd), hence we get X =
∑d

i=1 wiai
1
p
xi

for training and X =
∑d

i=1 wixi for testing.

For the ease of deduction, we assume that the inputs all

come from the same distribution with mean c and variance

v (i.e., E(xi) = c, V ar(xi) = v, v > 0 for any i = 1 . . . d).

We let the ai and xi be mutually independent, considering

the property of Dropout. Due to the aforementioned defini-

tion, ai and aj are mutually independent as well.

3.1. Case (a)

By using the definition of the variance and following the

paradigms above, we have that

V arTrain(X)

=
1

p2
E(a2k)E(x2

k)−
1

p2
(E(ak)E(xk))

2=
1

p
(c2 + v)−c2.

(5)

In inference, BN keeps the moving average of variance (i.e.,

E
′

B(
1
p
(c2 + v) − c2)) fixed. That is, BN wishes that the

variance of neural response X , which comes from the input

images initially, is supposed to be close to E
′

B(
1
p
(c2 + v)−

c2). However, Dropout breaks the harmony when it comes

to its test stage by having X = xk to get V arTest(X) =
V ar(xk) = v.

If putting V arTest(X) into the unbiased variance esti-

mate, it becomes E
′

B(v) which is obviously different from

the popular statistic E
′

B(
1
p
(c2+v)−c2) of BN during train-

ing when Dropout (p < 1) is applied. Therefore, the shift

ratio△ is obtained by

△(p) =
V arTest(X)

V arTrain(X)
=

v
1
p
(c2 + v)− c2

. (6)

In case (a), the variance shift happens via a coefficient

△(p) ≤ 1. Since modern neural networks carry a deep

feedforward topologic structure, the deviate numerical ma-

nipulations can lead to more uncontrollable numerical out-

puts of subsequent layers (Fig. 1). It brings the chain reac-

tion of amplified shift of variances (even affects the means

further) in every BN layers sequentially, as the networks go

deeper. We will show that it directly leads to a dislocation

of final predictions and makes the system suffer from a per-

formance drop later in the statistical experimental part (e.g.,

Figs. 4 and 5 in Section 4).

In this design (i.e., BN directly follows Dropout), if we

want to alleviate the variance shift risks, i.e.,△(p)→ 1, the

only thing we can do is to eliminate Dropout which means

setting the Dropout retain ratio p → 1. Fortunately, the

architectures where Dropout brings benefits (e.g., in Wide

ResNet) do not follow this type of arrangement. In fact,

they adopt the case (b) in Fig. 2, which is more common in

practice, and we will describe it in details as follows.

3.2. Case (b)

At this time, X is obtained by
∑d

i=1 wiai
1
p
xi during

training, where w denotes for the corresponding weights

for x, along with the Dropout applied. For the ease of de-

duction, we assume that in the very later epoch of training,

the weights of w remains constant, giving that the gradi-

ents become significantly close to zero. Similarly, we can

2684



0 20 40 60 80 100

Convolutional Layer Index of Networks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 o

f 
(c
os

(θ
))

2

PreResNet
ResNeXt
WRN
DenseNet

0 1000 2000 3000 4000 5000 6000

Weight Dimension d of Convolutional Filter

0

20

40

60

80

100

M
e
a
n
 o

f 
d
(c
os

(θ
))

2

PreResNet
ResNeXt
WRN
DenseNet

Figure 3. Statistical mean values of (cos θ)2 and d(cos θ)2.

These four modern architectures are trained without Dropout

on CIFAR100, respectively. We observe that (cos θ)2 lies in

(0.01, 0.10) approximately in every network structure and various

datasets. Interestingly, the term d(cos θ)2 in WRN is significantly

bigger than those on other networks mainly due to its larger chan-

nel width d.

expand V arTrain(X) as:

V arTrain(X) = Cov(

d∑

i=1

wiai
1

p
xi,

d∑

i=1

wiai
1

p
xi)

= (
1

p
(c2 + v)− c2)(

d∑

i=1

w2
i + ρax

d∑

i=1

d∑

j 6=i

wiwj),

(7)

where ρaxi,j =
Cov(aixi,ajxj)√

V ar(aixi)
√

V ar(ajxj)
∈ [−1, 1]. For the

ease of deduction, we simplify all the linear correlation co-

efficients to be the same as a constant ρax = ρaxi,j , ∀i, j =

1 . . . d, i 6= j. Similarly, V arTest(X) is obtained by

V arTest(X) = Cov(

d∑

i=1

wixi,

d∑

i=1

wixi)

= v(
d∑

i=1

w2
i + ρx

d∑

i=1

d∑

j 6=i

wiwj),

(8)

where ρxi,j =
Cov(xi,xj)√

V ar(xi)
√

V ar(xj)
∈ [−1, 1], and we also

have a constant ρx = ρxi,j , ∀i, j = 1 . . . d and i 6= j. Since

ai and xi, ai and aj are mutually independent, we can get

the relation between ρax and ρx:

ρax = ρaxi,j =
Cov(aixi, ajxj)√

V ar(aixi)
√

V ar(ajxj)

=
v

1
p
(c2 + v)− c2

ρxi,j =
v

1
p
(c2 + v)− c2

ρx.

(9)

According to Eqs. (7), (8) and (9), the variance shift for

case (b) can be written as:

△(p, d) =
V arTest(X)

V arTrain(X)

=
v + vρx(d(cos θ)2 − 1)

1
p
(c2 + v)− c2 + vρx(d(cos θ)2 − 1)

,

(10)

where (cos θ)2 comes from the expression:

Table 1. Averaged means of (cos θ)2 and d(cos θ)2 over all the

convolutional layers on four representative networks.

Networks
CIFAR10 CIFAR100

(cos θ)2 d(cos θ)2 (cos θ)2 d(cos θ)2

PreResNet-110 [11] 0.03546 2.91827 0.03169 2.59925

ResNeXt-29 [32] 0.02244 14.78266 0.02468 14.72835

WRN-28-10 [33] 0.02292 52.73550 0.02118 44.31261

DenseNet-BC [16] 0.01538 3.83390 0.01390 3.43325

(
∑d

i=1 wi)
2

d ·∑d
i=1 w

2
i

= (

∑d
i=1 1 · wi√∑d

i=1 1
2

√∑d
i=1 w

2
i

)

2

= (cos θ)2,

(11)

and θ denotes for the angle between vector w and vector

(1 . . . 1) ∈ Rd. To empirically prove that d(cos θ)2 scales

approximately linear to d, here we made rich calculations

w.r.t the terms d(cos θ)2 and (cos θ)2 on four modern ar-

chitectures1 trained on CIFAR10/100 datasets (Table 1 and

Fig. 3.2). Based on Table 1 and Fig. 3.2, we observe that

(cos θ)2 lies in (0.01, 0.10) stably in every type of the net-

work whilst d(cos θ)2 tends to increase in parallel when d

grows. From Eq. (10), the inequation
V arTest(X)
V arTrain(X)

< 1

holds obviously when p < 1. If we want V arTest(X) to be

close with V arTrain(X), we need this term

△(p, d)=
vρx + v−vρx

d(cos θ)2

vρx+
1
p
v−vρx+( 1

p
−1)c2

d(cos θ)2

=
vρx(d(cos θ)2 − 1) + v

vρx(d(cos θ)2−1)+ 1
p
(c2 + v) − c2

(12)

to approach 1. There are two ways to achieve△(p, d)→ 1:

• p→ 1: maximizing the Dropout retain ratio p (ideally

up to 1 which means Dropout is totally eliminated);

• d → ∞: growing the width of channel exactly as the

Wide ResNet did to enlarge d.

4. Statistical Experiments

We conduct extensive statistical experiments to check the

correctness of above deduction in this section. Four mod-

ern architectures including DenseNet [16], PreResNet [11],

ResNeXt [32] and Wide ResNet (WRN) [33] are adopted

on CIFAR10 and CIFAR100 datasets.

Datasets. The two CIFAR datasets [20] consist of col-

ored natural scene images, with 32×32 pixel each. The

training and test sets contain 50k images and 10k images

respectively. CIFAR10 (C10) has 10 classes and CIFAR100

(C100) has 100. For data preprocessing, we normalize the

data by using the channel means and standard deviations.

For data augmentation, we adopt a standard scheme that is

widely used in [11, 16, 21, 23, 22, 27, 29]: the images are

first zero-padded with 4 pixels on each side, then a 32×32

1For the convolutional filters which have larger than 1 filter size as

k × k, k > 1, we vectorise them by expanding its channel width d to

d× k × k while maintaining all the weights.

2685



0 20 40 60 80 100 120 140 160 180

[Dropout-(a) C10] BN index on PreResNet

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(a) C10] BN index on ResNeXt

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(a) C10] BN index on WRN

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(a) C10] BN index on DenseNet

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100 120 140 160 180

[Dropout-(a) C100] BN index on PreResNet

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(a) C100] BN index on ResNeXt

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(a) C100] BN index on WRN

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(a) C100] BN index on DenseNet

1.0

1.5

2.0

2.5

3.0

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100 120 140 160 180

[Dropout-(b) C10] BN index on PreResNet

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(b) C10] BN index on ResNeXt

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(b) C10] BN index on WRN

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(b) C10] BN index on DenseNet

1.00

1.05

1.10

1.15

1.20
sh

if
t 

ra
ti

o
Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100 120 140 160 180

[Dropout-(b) C100] BN index on PreResNet

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25 30

[Dropout-(b) C100] BN index on ResNeXt

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 5 10 15 20 25

[Dropout-(b) C100] BN index on WRN

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

0 20 40 60 80 100

[Dropout-(b) C100] BN index on DenseNet

1.00

1.05

1.10

1.15

1.20

sh
if
t 

ra
ti

o

Dropout 0.0
Dropout 0.1
Dropout 0.3
Dropout 0.5
Dropout 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(a) C10

0

5

10

15

20

E
rr

o
r 

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(a) C100

0

5

10

15

20

25

30

35

40

E
rr

o
r 

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(b) C10

0

1

2

3

4

5

6

7

8

E
rr

o
r 

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

PreResNet ResNeXt WRN DenseNet

Dropout-(b) C100

0

5

10

15

20

25

30

E
rr

o
r 

ra
te

 (
%

)

0.0 0.1 0.3 0.5 0.7

Figure 4. See by columns. Visualizations about “variance shift” on BN layers of four modern networks w.r.t: 1) Dropout type; 2) Dropout

drop ratio; 3) dataset, along with their test error rates (the 5th row). Obviously, WRN is less influenced by Dropout (e.g., in 3rd row and 4th

column) when the Dropout-(b) drop ratio ≤ 0.5, and thus it even enjoys an improvement with Dropout applied with BN in each bottleneck.

crop is randomly sampled from them and half of the images

are horizontally flipped.

Networks with Dropout. The four modern architectures

are all chosen from the open-source codes written in pytorch

that can reproduce the results reported in previous papers.

Specifically, there are PreResNet-110 [11], ResNeXt-29, 8

× 64 [32], WRN-28-10 [33] and DenseNet-BC (L=100,

k=12) [16]. Since the BN layers are already developed as

the indispensible components of their body structures, we

arrange Dropout that follows the two cases in Fig. 2:

(a) We assign all the Dropout layers only and right be-

fore all the bottlenecks’ last BN layers in these four net-

works, neglecting their possible Dropout implementations

(as in DenseNet [16] and Wide ResNet [33]). We denote

this design to be models of Dropout-(a).

(b) We follow the assignment of Dropout in Wide

ResNet [33], which finally improves WRNs’ overall perfor-

mances, to place the Dropout before the last Convolutional

layer in every bottleneck block of PreResNet, ResNeXt and

DenseNet. This scheme is denoted as Dropout-(b) models.

Statistics of variance shift. Assume a network G con-

tains n BN layers in total. We arrange these BN layers from

shallow to deep by giving them indices that range from 1
to n accordingly. The whole statistical manipulation is con-

ducted by the following three steps:

(1) Calculate moving vari, i ∈ {1, ..., n}: when G is

trained until convergence, each BN layer obtains the mov-

ing average of neural variance (the unbiased variance esti-

mate) from the feature-map that it receives during the en-

tire learning procedure. We denote that variance as mov-

ing var. Since the moving var for every BN layer is a vector

(whose length is equal to the amount of channels of previous

2686



Table 2. Averaged shift ratios over all the BN layers of Dropout-(b)

models on CIFAR100 dataset. Smaller is better for stability.

Dropout ratios: 0.1 0.3 0.5 0.7

PreResNet-110 [11] 1.008945 1.040766 1.052092 1.076403

ResNeXt-29 [32] 1.006296 1.032514 1.058549 1.134871

WRN-28-10 [33] 1.003485 1.006466 1.013873 1.033254

DenseNet-BC [16] 1.013859 1.015065 1.036019 1.042925

feature-map), we leverage its mean value to represent mov-

ing var instead, in purpose of an ease visualization. Further,

we denote moving vari as the moving var of i-th BN layer.

(2) Calculate real vari, i ∈ {1, ..., n}: after training,

we fix all the parameters of G and set its state to the evalua-

tion mode (hence the Dropout will apply its inference policy

and BN will freeze its moving averages of means and vari-

ances). The training data is again utilized for going through

G within a certain of epochs, in order to get the real expec-

tation of neural variances on the feature-maps before each

BN layer. Data augmentation is also kept to ensure that ev-

ery possible detail for calculating neural variances remains

exactly the same with training. Importantly, we adopt the

same moving average algorithm to accumulate the unbiased

variance estimates. Similarly in (1), we let the mean value

of real variance vector be real vari before the i-th BN layer.

(3) Get “shift ratio” = max( real vari
moving vari

,
moving vari

real vari
), i ∈

[1, n]: since we focus on the shift, the scalings are all kept

above 1 by their reciprocals if possible in purpose of a bet-

ter view. Various Dropout drop ratios [0.0, 0.1, 0.3, 0.5, 0.7]
are applied for comparisons in Fig. 4. The corresponding

error rates are also included in each column. To be spe-

cific, we also calculate all the averaged shift ratios over the

entire networks under drop ratio 0.1, 0.3, 0.5, 0.7 to show

the quantitive analyses based on Fig. 4 in Table 2. The re-

sults demonstrate that WRNs’ shift ratios are considerably

smaller than other counterparts in every Dropout setting.

The statistical experiments confirm our analyses. In

these four columns of Fig. 4, we discover that when the

drop ratio is relatively small (i.e., 0.1), the green curves

go close to the blue ones (i.e., models without Dropout),

thus their performances are comparable or even better to the

baselines. It agrees with our previous deduction that when-

ever in (a) or (b) case, decreasing drop ratio 1 − p will al-

leviate the variance shift risks. Furthermore, in Dropout-(b)

models (i.e., the last two columns) we find that, for WRNs,

the curves with drop ratio 0.1, 0.3 even 0.5 approach closer

to the one with 0.0 than other networks, and they all out-

perform the baseline. It also aligns with our analyses since

WRN has a significantly larger channel dimension d, and

it ensures that a slightly larger p will not explode the neu-

ral variance too much. Furthermore, the statistics on Ta-

ble 2 also support our previous deduction that WRN is

less influenced by Dropout in terms of variance shift ratio,

and its performance consistently improves when drop ra-

Figure 5. Examples of inconsistent neural responses between train

mode and test mode of DenseNet Dropout-(a) 0.5 trained on CI-

FAR10 dataset. These samples are from the training data, whilst

they are correctly classified by the model during learning yet er-

roneously judged in inference, despite all the fixed model param-

eters. Variance shift finally leads to the prediction shift that drops

the performance.

tio < 0.5, whilst other models get stucked or perform even

worse when drop ratio reaches 0.3 (last row in Fig. 4).

Neural responses (of the last layer before softmax)

for training data are unstable from training stage to test

stage. To get a clearer understanding of the numerical dis-

turbance that the variance shift brings finally, a bundle of

images (from training data) are drawn with their neural re-

sponses before the softmax layer in both training stage and

test stage (Fig. 5). From those pictures and their responses,

we can find that with all the weights of networks fixed, only

a mode transfer (from train to test) will change the distri-

bution of the final responses even in the training set, and

it leads to a wrong classification consequently. It proves

that the predictions of training data differs between train-

ing stage and test stage when a network is equipped with

Dropout and BN layers in their bottlenecks. Therefore, we

confirm that the unstable numerical behaviors are the fun-

damental reasons for the performance drop.

Only an adjustment for moving means and variances

will bring an improvement, despite all other parameters

fixed. Given that the moving means and variances of BN

will not match the real ones during test, we attempt to ad-

just these values by passing the training data again under

the evaluation mode. In this way, the moving average algo-

rithm [17] can also be applied. After shifting the moving

statistics to the real ones by using the training data, we can

have the model performed on the test set. From Table 3,

All the Dropout-(a)/(b) 0.5 models outperform their base-

lines by having their moving statistics adjusted. Significant

improvements (e.g., ∼ 2 and ∼ 4.5 gains for DenseNet on

CIFAR10 and on CIFAR100 respectively) can be observed

in Dropout-(a) models. It again verifies that the drop of per-

formance could be attributed to the “variance shift”: a more

2687



Table 3. Adjust BN’s moving mean/variance by running moving

average algorithm on training data under test mode. These error

rates (%) are all averaged from 5 parallel runnings with different

random initial seeds. “-A” means the corresponding adjustment.

For comparisons, we also list the performances of these models

without Dropout. The best records are marked red.

C10
Dropout-(a) Dropout-(b)

w/o Dropout
0.5 0.5-A 0.5 0.5-A

PreResNet 8.42 6.42 5.85 5.77 5.02

ResNeXt 4.43 3.96 4.09 3.93 3.77

WRN 4.59 4.20 3.81 3.71 3.97

DenseNet 8.70 6.82 5.63 5.29 4.72

C100
Dropout-(a) Dropout-(b)

w/o Dropout
0.5 0.5-A 0.5 0.5-A

PreResNet 32.45 26.57 25.50 25.20 23.73

ResNeXt 19.04 18.24 19.33 19.09 17.78

WRN 21.08 20.70 19.48 19.15 19.17

DenseNet 31.45 26.98 25.00 23.92 22.58

0 10 20 30 40 50 60 70 80

Number of samples used for Monte-Carlo averaging (k) on CIFAR100

23

24

25

26

27

28

29

T
e
st

 e
rr

o
r 

(%
)

Monte-Carlo Model Averaging on Dropout-(b) 0.5 PreResNet
Approximate Averaging by Weight Scaling on Dropout-(b) 0.5 PreResNet
Dropout-(b) 0.0 PreResNet (without Dropout)

Figure 6. Monte-Carlo model averaging vs. weight scaling vs. no

Dropout. The ensemble of models which avoid “variance shift”

risks still underperforms the baseline trained without Dropout.

proper popular statistics with smaller variance shift could

recall a bundle of erroneously classified samples back to the

right ones. However, except for WRN, the performances of

other architectures after adjusting statistics still underper-

form their counterparts without Dropout. This cue shows

that for most structures, shifting moving statistics via train-

ing data can not make up for the performance gap.

Although Monte-Carlo model averaging can avoid

“variance shift”, it costs plenty of time and limits the

performance.. The efficient test time procedure that the

original Dropout [28] propose is to do an approximate

model combination by scaling down the weights of the

trained neural network. And it is exactly the central rea-

son which is responsible for the variance shift risks, as it

only ensures the stability of neural means, rather the vari-

ances. Therefore, a natural question comes out: what if

we try to make predictions by sampling k neural nets using

Dropout for each test case and average their predictions?

Theoretically, applying Dropout in the test phase will avoid

the “variance shift” yet slightly harm the performance. Al-

though it is shown very expensive in [28], we are still in-

teresting how many samples networks are needed to match

the performance of the approximate averaging method or

the baseline models without Dropout. Here we take the

Dropout-(b) 0.5 PreResNet model as an example and do

classification on CIFAR100 by averaging the predictions of

k randomly sampled neural networks.

From Fig. 6, we can find that nearly 10 samples of net-

works can approach the results of weight scaling. And more

rounds of runnings will give a slight gain in the end but can

not reach the performance of the baseline without Dropout.

To conclude, these sampled networks still cannot compen-

sate the performance drop with such an expensive way in

the test phase.

5. Strategy to Combine Them Better

Since we get a clear knowledge about the disharmony be-

tween Dropout and BN, we can easily develop an approach

to combine them together, to see whether an extra improve-

ment can be obtained. In this section, we introduce one pos-

sible solution that slightly modifies the formula of Dropout

and make it less sensitive to variance, which can alleviate

the shift problem and stabilize the numerical behaviors.

The drawbacks of vanilla Dropout lie in the weight scale

during the test phase, which may lead to a large disturbance

on statistical variance. This clue can push us to think: if

we find a scheme that functions like Dropout but carries a

lighter variance shift, we may stabilize the numerical be-

haviors of neural networks, thus the final performance will

probably benefit from such stability. Here we take the case

(a) as an example for investigations where the variance shift

rate is v
1
p
(c2+v)−c2

= p (we let c = 0 for simplicity in

this discussion). That is, if we set the drop ratio (1 − p)
as 0.1, the variance would be scaled by 0.9 when the net-

work is switched from training to test. Inspired by the orig-

inal Dropout [28], where the authors also proposed another

form of Dropout that amounts to adding a Gaussian dis-

tributed random variable with zero mean and standard de-

viation equal to the activation of the unit, i.e., xi + xir and

r ∼ N (0, 1), we further modify r as a uniform distribution

that lies in [−β, β], where 0 ≤ β ≤ 1. Therefore, each hid-

den activation would be X = xi + xiri and ri ∼ U(−β, β)
[6]. We name this form of Dropout as “Uout” for simplicity.

With the mutually independent distribution between xi and

ri hold, we apply X = xi+xiri, ri ∼ U(−β, β) in training

mode and X = xi in test. Similarly, in the simplified case

2688



Table 4. Apply new form of Dropout (i.e. Uout) in Dropout-(b)

models. These error rates (%) are all averaged from 5 parallel run-

nings with different random initial seeds. The numbers in brackets

denote the values of β relating to the performances.

C10 β 0.0 [0.2, 0.3, 0.5]

PreResNet 5.02 4.85 (0.2)

ResNeXt 3.77 3.75 (0.3)

WRN 3.97 3.79 (0.5)

DenseNet 4.72 4.61 (0.5)

C100 β 0.0 [0.2, 0.3, 0.5]

PreResNet 23.73 23.53 (0.3)

ResNeXt 17.78 17.72 (0.2)

WRN 19.17 18.87 (0.5)

DenseNet 22.58 22.30 (0.5)

of c = 0, we can deduce the variance shift again as follows:

V arTest(X)

V arTrain(X)
=

V ar(xi)

V ar(xi + xiri)
=

v

E((xi + xiri)2)

=
v

E(x2
i ) + 2E(x2

i )E(ri) + E(x2
i )E(r2i )

=
3

3 + β2
.

(13)

Given β as 0.1, the new variance shift rate would be
300
301 ≈ 0.9966777 which is much closer to 1.0 than the

previous 0.9 in case (a). A list of experiments is hence

employed based on those four modern networks under

Dropout-(b) settings in Table 4. We search β in range

of [0.2, 0.3, 0.5] to find optimal results. We observe that

“Uout” with larger ratios tends to perform favorably well,

which indicates its superior stability. Except for ResNeXt,

nearly all the architectures achieved up to 0.2 ∼ 0.3
increase of accuracy on both CIFAR10 and CIFAR100

dataset.

Beyond Uout, we discover that adding only one Dropout

layer right before the softmax layer can avoid the variance

shift risks since there are no following BN layers. We eval-

uate several state-of-the-art models on the ImageNet vali-

dation set (Table 5), and observe consistent improvements

when drop ratio 0.2 is employed after the last BN layers on

the large scale dataset. The benefits of doing so also confirm

the effectiveness of our theory.

ImageNet drop ratio
top-1 err. top-5 err.

0.0 0.2 0.0 0.2

ResNet-200 [10] 21.70 21.48 5.80 5.55

ResNeXt-101 [32] 20.40 20.17 5.30 5.12

Table 5. Error rates (%) on ImageNet validation set.

6. Summary of Guidelines

According to the analyses and experiments, we can get

the following understandings as guidelines:

• In modern CNN architectures, the original Dropout

and BN are not recommended to appear in the bottle-

neck part due to their variance shift conflict, except

that we have a relatively large feature dimension. We

also suggest the drop ratio < 0.5 since the deduction

Eq. (12) and the experiments (Fig. 4) show higher drop

ratio will still break the stability of neural responses in

any case. To conclude, the shift risk depends on both

the Dropout ratio and feature dimension.

• Adjusting the moving means and variances through

training data is beneficial for improvements, but it

can not compensate the entire loss in performance,

compared to the baselines which are trained without

Dropout. Moreover, the ensemble of predictions from

networks which apply Dropout during test to avoid

“variance shift” still underperforms these baselines.

• We understand why some recent models (e.g.

Inception-v4 [30], SENet [14]) have adopted one

Dropout layer after the last BN layer of the entire net-

work, because it will not lead to the variance shift es-

sentially based on our theory.

• We also discover that the form of Dropout can be mod-

ified, in purpose of reducing their variance shift to

boost their performances even when they are in the bot-

tleneck building blocks.

7. Conclusion

In this paper, we investigate the “variance shift” phe-

nomenon when Dropout layers are applied with Batch Nor-

malization on modern convolutional networks. We discover

that due to their distinct test policies, neural variance will be

improper and shifted as the information flows in inference,

and it leads to the unexpected final predictions that drops

the performance. These understandings can serve as prac-

tical guidelines for designing novel regularizers or getting

better practices in the area of Deep Learning.

Acknowledgments

The authors would like to thank the editor and the anony-

mous reviewers for their critical and constructive comments

and suggestions. This work was supported by the National

Science Fund of China under Grant No. U1713208, Pro-

gram for Changjiang Scholars and National Natural Sci-

ence Foundation of China under Grant No. 61836014.

It was also supported by NSF of China (No: 61602246),

NSF of Jiangsu Province (No: BK20171430), the Funda-

mental Research Funds for the Central Universities (No:

30918011319), the open project of State Key Laboratory

of Integrated Services Networks (Xidian University, ID:

ISN19-03), the Summit of the Six Top Talents Program

(No: DZXX-027), and the Young Elite Scientists Sponsor-

ship Program by CAST (No: 2018QNRC001).

2689



References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-

flow: A system for large-scale machine learning. In OSDI,

volume 16, pages 265–283, 2016.

[2] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Eval-

uation of output embeddings for fine-grained image classifi-

cation. In CVPR, pages 2927–2936, 2015.

[3] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,

E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng,

G. Chen, et al. Deep speech 2: End-to-end speech recog-

nition in english and mandarin. In ICML, pages 173–182,

2016.

[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-

cient machine learning library for heterogeneous distributed

systems. arXiv preprint arXiv:1512.01274, 2015.

[5] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-

dependent pre-trained deep neural networks for large-

vocabulary speech recognition. IEEE Transactions on audio,

speech, and language processing, 20(1):30–42, 2012.

[6] J. Friedman, T. Hastie, and R. Tibshirani. The elements of

statistical learning, volume 1. Springer series in statistics

New York, NY, USA:, 2001.

[7] Y. Gal, J. Hron, and A. Kendall. Concrete dropout. In

NeurIPs, pages 3581–3590, 2017.

[8] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In ICAIS, pages

249–256, 2010.

[9] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,

E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates,

et al. Deep speech: Scaling up end-to-end speech recogni-

tion. arXiv preprint arXiv:1412.5567, 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In ECCV, pages 630–645, 2016.

[12] D. Hendrycks and K. Gimpel. Adjusting for dropout variance

in batch normalization and weight initialization. 2017.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017.

[14] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. arXiv preprint arXiv:1709.01507, 2017.

[15] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Dar-

rell. Natural language object retrieval. In CVPR, pages

4555–4564, 2016.

[16] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016.

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, pages 448–456, 2015.

[18] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-

aware neural language models. In AAAI, pages 2741–2749,

2016.

[19] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter.

Self-normalizing neural networks. In NeurIPs, pages 971–

980, 2017.

[20] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009.

[21] G. Larsson, M. Maire, and G. Shakhnarovich. Fractalnet:

Ultra-deep neural networks without residuals. arXiv preprint

arXiv:1605.07648, 2016.

[22] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. In ICAIS, pages 562–570, 2015.

[23] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013.

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

[25] T. Salimans and D. P. Kingma. Weight normalization: A

simple reparameterization to accelerate training of deep neu-

ral networks. In NeurIPs, pages 901–909, 2016.

[26] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,

and R. Webb. Learning from simulated and unsupervised

images through adversarial training. In CVPR, volume 2,

page 5, 2017.

[27] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-

miller. Striving for simplicity: The all convolutional net.

arXiv preprint arXiv:1412.6806, 2014.

[28] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. JMLR, 15(1):1929–1958, 2014.

[29] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training

very deep networks. In NeurIPS, pages 2377–2385, 2015.

[30] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, pages 4278–4284, 2017.

[31] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision. In

CVPR, pages 2818–2826, 2016.

[32] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,

pages 5987–5995, 2017.

[33] S. Zagoruyko and N. Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

[34] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile

devices. arXiv preprint arXiv:1707.01083, 2017.

2690



Supplementary Materials for “Understanding the Disharmony between Dropout
and Batch Normalization by Variance Shift”

A. Details of formulas in Section 3.2 (paper)
In this section, we list the detailed deductions of formu-

las especially in Section 3.2 (paper). Firstly, V arTrain(X)
is expanded as:

V arTrain(X) = Cov(

d∑
i=1

wiai
1

p
xi,

d∑
i=1

wiai
1

p
xi)

=
1

p2

d∑
i=1

(wi)
2V ar(aixi)

+
1

p2

d∑
i=1

d∑
j 6=i

ρaxi,jwiwj

√
V ar(aixi)

√
V ar(ajxj)

= (
1

p
(c2 + v)− c2)(

d∑
i=1

w2
i + ρax

d∑
i=1

d∑
j 6=i

wiwj),

(1)

and V arTest(X) is obtained:

V arTest(X) = V ar(

d∑
i=1

wixi)

= Cov(

d∑
i=1

wixi,

d∑
i=1

wixi) =

d∑
i=1

w2
i V ar(xi)

+

d∑
i=1

d∑
j 6=i

ρxi,jwiwj

√
V ar(xi)

√
V ar(xj)

= v(

d∑
i=1

w2
i + ρx

d∑
i=1

d∑
j 6=i

wiwj).

(2)

Further we can get the relation between ρax and ρx:

ρax = ρaxi,j =
Cov(aixi, ajxj)√

V ar(aixi)
√
V ar(ajxj)

=
p2Cov(xi, xj)

p(c2+v)−p2c2

v

√
V ar(xi)

√
V ar(xj)

=
v

1
p (c

2 + v)− c2
ρxi,j =

v
1
p (c

2 + v)− c2
ρx.

(3)

According to the above equations, the variance shift for

case (b) can be written as:

4(p, d) =
V arTest(X)

V arTrain(X)

=
v(
∑d

i=1 w
2
i + ρx

∑d
i=1

∑d
j 6=i wiwj)

( 1p (c
2 + v)− c2)(

∑d
i=1 w

2
i + ρax

∑d
i=1

∑d
j 6=i wiwj)

=
v
∑d

i=1 w
2
i + vρx

∑d
i=1

∑d
j 6=i wiwj

( 1p (c
2 + v)− c2)

∑d
i=1 w

2
i + vρx

∑d
i=1

∑d
j 6=i wiwj

=
v + vρx(d(cos θ)2 − 1)

1
p (c

2 + v)− c2 + vρx(d(cos θ)2 − 1)
,

(4)


	Li_Understanding_the_Disharmony_Between_Dropout_and_Batch_Normalization_by_Variance_CVPR_2019_paper.pdf
	Li_Understanding_the_Disharmony_CVPR_2019_supplemental.pdf

