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Design of Recurrent Neural Networks for Solving
Constrained Least Absolute Deviation Problems

Xiaolin Hu, Member, IEEE, Changyin Sun, Member, IEEE, and Bo Zhang

Abstract—Recurrent neural networks for solving constrained
least absolute deviation (LAD) problems or L1-norm optimization
problems have attracted much interest in recent years. But
so far most neural networks can only deal with some special
linear constraints efficiently. In this paper, two neural networks
are proposed for solving LAD problems with various linear
constraints including equality, two-sided inequality and bound
constraints. When tailored to solve some special cases of LAD
problems in which not all types of constraints are present, the two
networks can yield simpler architectures than most existing ones
in the literature. In particular, for solving problems with both
equality and one-sided inequality constraints, another network
is invented. All of the networks proposed in this paper are
rigorously shown to be capable of solving the corresponding
problems. The different networks designed for solving the same
types of problems possess the same structural complexity, which
is due to the fact these architectures share the same computing
blocks and only differ in connections between some blocks. By
this means, some flexibility for circuits realization is provided.
Numerical simulations are carried out to illustrate the theoretical
results and compare the convergence rates of the networks.

Index Terms—L1-norm optimization, least absolute deviation
(LAD), minimax optimization, recurrent neural network (RNN),
stability analysis.

I. Introduction

CONSIDER solving the following minimization problem:

min ‖Ax − b‖1

subject to Cx ∈ �, x ∈ X
(1)

where x ∈ �n is the unknown variable, A ∈ �m×n, b ∈
�m, C ∈ �r×n are given parameters, and X, � are two
nonempty box sets defined as
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X = {x ∈ �n|ρ ≤ x ≤ �}
� = {y ∈ �r|l ≤ y ≤ h}

where ρ, �, l, h are vectors whose components are all con-
stants. In above equations, the inequality signs between two
vectors are understood componentwise. Note that some com-
ponents of l and ρ can be −∞ and some components of h

and � can be +∞. So, the two-sided inequality constraints
Cx ∈ �, or l ≤ Cx ≤ h can include both one-sided inequality
constraints (l or h is infinity) and equality constraints (l = h) as
special cases. Clearly x ∈ X is also a special case of Cx ∈ �,
but as it can be handled more efficiently in many algorithms, it
is separated from the inequality constraints and given a name
bound constraint.

Equation (1) represents a very general L1-norm optimization
problem often encountered in signal processing. One of its
most important applications is the estimation of model pa-
rameters in the presence of background noise. In that case, x

stands for the vector of parameters to be estimated, A stands
for the model matrix, b stands for the vector of observation and
e � b−Ax stands for the noise and errors contained in b. The
goal is to estimate x in the constrained set {x ∈ X|Cx ∈ �}
conforming to a certain criterion such as least square (LS), i.e.,
minimal ‖e‖2, or least absolute deviation (LAD), i.e., minimal
‖e‖1. In this sense, (1) is often called an LAD problem. Due
to the smoothness of ‖e‖2 and nonsmoothness of ‖e‖1, the LS
solution is easier to obtain than the LAD solution. However,
it is well known that the LAD method performs much better
than the LS method when the noise distribution is nonGaussian
such as Laplace or Cauchy distribution, which is often the case
in practice [2], [7], [14]. Moreover, the LAD method is more
robust as it is less susceptible to outliers (bad data points) than
the LS method.

Because of their excellent properties, LAD problems have
been extensively studied and many numerical algorithms have
been proposed for solving them (see [2], [24], [29], [30], and
references therein). Recently, there is a surge of interest in
designing recurrent neural networks (RNNs) for solving them.
For example, Wang et al. [33] proposed an RNN for solving
unconstrained LAD problems (all constraints are absent). For
another example, Xia [35] and Kamel [36] proposed two
RNNs for solving LAD problems with bound constraint only.
The most powerful network so far might be the one devised
in [34] as it is claimed to be capable of handling both
equality constraints and inequality constraints (but this claim
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needs further investigation; see Section III-B). A distinguished
property shared by these RNNs is their dynamic nature in the
process of searching for solutions, which makes them possible
to be implemented physically by designated hardware such as
application-specific integrated circuits, where the processing is
truly done in a parallel manner. This hardware solver concept
has stimulated the emergence of many RNNs for solving
various optimization-related problems (see [1], [4]–[6], [8]–
[13], [16]–[19], [25], [28], [32], and [37]–[39]) not limited
to LAD problems since the mid 1980s when Hopfield and
Tank published some milestone articles [15], [31]. A variety
of RNNs have been proposed for solving linear and nonlinear
programming problems [1], [6], [8], [10], [11], [13], [19], [25],
[37], [38], combinatorial optimization problems [9], [28], [32],
variational inequalities [4], [12], [17], [18], algebraic problems
[5], [39], and so on (see also references therein).

For solving the LAD problems considered in [33], [35],
[36], the RNNs proposed in these articles have many excellent
properties. For instance, all of them can guarantee the global
convergence of the output to exact solutions without any con-
trol circuits for tuning parameters during the dynamic evolving
process. However, these models may fail to produce efficient
circuits when a generally constrained LAD problem like (1) is
encountered. In fact, none of the models in [33], [35], [36] can
solve an LAD problem with all types of constraints including
bound, inequality and equality constraints. Though the model
proposed in [34] may solve such problems, its dimension must
be very high because it has to convert the bound and two-sided
inequality constraints into one-sided inequality constraints,
which is undesired for circuits realization. Even worse, its
ability for handling inequality constraints is questionable. In
Section III-B, a simple example will be used to illustrate this
point. On the other hand, even for solving the special problems
considered in these references, the proposed networks are not
simplest and there leaves much space for improvement (see
Section V for simpler architectures).

In this paper, we aim at answering the following two
questions: 1) Is there an RNN capable of solving the most
general LAD problem (1) with low structural complexity?
2) Are there simpler RNNs compared with existing ones [33],
[35], [36] for solving the same special LAD problems?

Meanwhile, we are not satisfied with designing just one
model for solving one problem; instead, we will endeavor to
find alternatives for solving every problem that we are inter-
ested in. This is quite useful for circuits practitioners to choose
appropriate models for implementation, as in practice some
physical limitations may make a particular implementation
inefficient. The idea for designing alternatives to a model that
has been proved to be feasible is to change some connections
in the feasible model without, or with least, insertion of
additional blocks. This idea has gained successes in design-
ing alternative RNNs for linear and quadratic programming
recently [20]–[22].

The rest of this paper is organized as follows. In Section II,
the optimality conditions of the general LAD problem (1) are
presented, which lay a base for RNN design in subsequent
sections. In Section III, two efficient RNNs are presented for
solving (1) with the discussion of their structural complexities.

In Section IV, their performances are analyzed rigorously. In
Section V, some important special cases of problem (1), as
well as the corresponding RNNs, are discussed. Section VI
presents the results of numerical simulations and Section VII
concludes this paper.

Throughout this paper, it is always assumed that there exists
at least one finite solution to the problem (1).

II. Problem Formulation

First of all we convert the LAD problem (1) into a min-
imax optimization problem. This is a regular strategy used
in [33]–[36].

Lemma 1: The problem (1) is equivalent to the following
optimization problem:

min max
y∈Y

yT (Ax − b)

subject to Cx ∈ �, x ∈ X
(2)

where Y = {y ∈ �m| − 1 ≤ yi ≤ 1, i = 1, . . . , m}.
Proof: The results can be established by using the same

techniques as in [33]–[36].
Then we define three piecewise linear functions

gX(·), gY (·), g�(·), which will be used extensively in
what follows. gX(x) is defined as (gX1 (x1), . . . , gXn

(xn))T

where

gXi
(xi) =

⎧⎨
⎩

ρi xi < ρi

xi ρi ≤ xi ≤ �i

�i xi > �i.

(3)

The other two functions can be defined similarly. These
functions are often called projection operators in the neural
network context [4], [10]–[12], [17]–[19], [37], [38].

Theorem 1: A point x∗ ∈ �n is a solution of problem (1)
if and only if there exists y∗ ∈ �m and z∗ ∈ �r such that

⎧⎪⎨
⎪⎩

x∗ = gX(x∗ − AT y∗ + CT z∗)

y∗ = gY (y∗ + Ax∗ − b)

Cx∗ = g�(Cx∗ − z∗).

(4)

Proof: According to Lemma 1, it is only needed to show
that the results hold for the minimax problem (2). Note that
Cx ∈ � can be written as Cx = s, s ∈ � by introducing a new
variable s. Then the Lagrangian function associated with the
minimax problem can be defined as

L(x, y, s, z) = yT (Ax − b) − zT (Cx − s).

According to the well-known saddle point theorem, a point
x∗ ∈ �n is a solution of problem (2) if and only if there exists
y∗ ∈ �m and s∗, z∗ ∈ �r such that

L(x∗, y, s∗, z) ≤ L(x∗, y∗, s∗, z∗) ≤ L(x, y∗, s, z∗)

for x ∈ X, y ∈ Y, s ∈ �, z ∈ �r. Let φ(y, z) = −L(x∗, y, s∗, z),
which is a linear function with respect to y and z. Clearly
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φ(y∗, z∗) = min φ(y, z) ∀y ∈ Y, z ∈ �r

which implies ∂φ(y,z)
∂z

|z=z∗ = Cx∗ − s∗ = 0 and (y −
y∗)T ∂φ(y,z)

∂y
|y=y∗ ≥ 0, ∀y ∈ Y . The latter equation is known

as a variational inequality, and a point y∗ satisfies it if and
only if y∗ = gY (y∗− ∂φ(y,z)

∂y
|y=y∗ ) = gY (y∗+Ax∗−b) [23]. Define

another function ψ(x, s) = L(x, y∗, s, z∗), which is linear in x

and s. Clearly

ψ(x∗, s∗) = min ψ(x, s) ∀x ∈ X, s ∈ �.

This is equivalent to (x − x∗)T ∂ψ(x,s)
∂x

|x=x∗ ≥ 0, ∀x ∈ X and
(s − s∗)T ∂ψ(x,s)

∂s
|s=s∗ ≥ 0, ∀s ∈ �, or

(x − x∗)T (AT y∗ − CT z∗) ≥ 0 ∀x ∈ X

(s − s∗)T z∗ ≥ 0, ∀s ∈ �.

The two equations imply x∗ = gX(x∗ − AT y∗ + CT z∗)
and s∗ = g�(s∗ − z∗) [23]. Because s∗ = Cx∗, the latter
equality can be rewritten as Cx∗ = g�(Cx∗ − z∗). The proof is
completed.

III. Two Neural Network Models

A. Models

In this section, we present two RNNs for solving the LAD
problem (1). The first one is governed by the following
dynamic equations:

NN-I:
d

dt

⎛
⎝x

y

z

⎞
⎠ = −λ

⎛
⎝ x − x̄

2(y − ȳ)
2(Cx̄ − z̄)

⎞
⎠

where

x̄ = gX(x − AT y + CT z)
ȳ = gY (y + Ax̄ − b)
z̄ = g�(Cx̄ − z)

and λ > 0 is a constant for scaling the convergence rate. The
output of the network is x. The second one is governed by the
following dynamic equations:

NN-II:
d

dt

⎛
⎝x

y

z

⎞
⎠ = −λ

⎛
⎝2(x − x̃)

y − ỹ

Cx − z̃

⎞
⎠

where

x̃ = gX(x − AT ỹ + CT (z − Cx + z̃))
ỹ = gY (y + Ax − b)
z̃ = g�(Cx − z)

and λ > 0. The output of the network is also x. For con-
venience, in what follows the two networks, as well as
their dynamic equations, are referred to as NN-I and NN-II,
respectively.

The two sets of dynamic equations share much similarity,
which can be understood as follows. If we let x̃ in NN-II be

equal to gX(x − AT ỹ + CT z̃), then one iteration of NN-I and
NN-II requires the same number of algebraic operations such
as summations, multiplications and nonlinear transformations
by appropriately arranging the computing orders (actually, in
NN-I, x̄ should be computed before ȳ and z̄; while in NN-II,
x̃ should be computed after ỹ and z̃). In other words, NN-
II entails just one more operation than NN-I, that is, adding
z−Cx, which is available from the third line, to z̃ to compute x̃.
This strong similarity stimulate us to ask whether some blocks
of one architecture can be used by the other. The answer is
yes.

Fig. 1 plots the architectures of the networks by block di-
agrams. In the figure, {aji}m×n = A, {cki}r×n = C, {bj}m×1 = b.
From the diagram, implementation of any model requires
n amplifiers for realizing the activation function gX(·), m

amplifiers for the activation function gY (·) and r amplifiers
for the activation function g�(·). (One should note that though
the term x̄ in NN-I appears also in the expressions of ȳ and
z̄, it does not mean that the gX term has to be implemented
three times in circuits as it can be built as a common block.
Likewise, ỹ and z̃ in NN-II are needed to be implemented
once only.) The rest elements required are some conventionaly
units for realizing weighted summations and integrations.
Now a days very-large-scale integration technologies make
this implementation to be an easy task. What we would
like to emphasize here is that in circuits realization the
two networks entail nearly the same number of elements
including the amplifiers, capacitors, connections weights and
so on. In fact, from the block diagrams, switching between
the two schemes can be easily achieved by changing some
connections and gain factors without adding or removing
any major computing units. The only difference is that for
implementing NN-I, the summator just before the “OUT6”
port [see Fig. 1(a)] is redundant, whereas it is a must for
NN-II. But in general this difference is negligible and we
can claim that the two networks possess the same structural
complexity.

B. Comparison With Existing Models

As pointed out in Section I, there exist several neural
networks for solving different types of LAD problem, e.g.,
[33]–[36], and the first three can not solve the most general
problem (1). Let us take a look at the last model, which was
assumed to be capable of solving the LAD problems in the
following form:

min ‖Ax − b‖1

subject to Ex ≤ f
(5)

where E and f are, respectively, a matrix and a vector with
appropriate dimensions. Obviously, the problem (1) can be
rewritten in the above form. The dynamics equations of the
network proposed in [34] for solving (5) are

d

dt

⎛
⎝x

y

w

⎞
⎠ = −λ

⎛
⎝ET ((Ex − f )+ − w) + AT ỹ

y − ỹ − AQ

(Ex − f )+ + EQ

⎞
⎠
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Fig. 1. Block diagrams of the neural networks NN-I and NN-II. (a) Basic blocks with their input and output ports, where i = 1, · · · , n, j = 1, · · · , m and
k = 1, · · · , r. (b) and (c) Illustrate how the blocks should be connected to constitute NN-I and NN-II. The output ports surrounded by dashed rectangles do
not need to be connected with other ports in the corresponding configuration. The gain factors in (a) for NN-I should be set as β1 = λ, β2 = β3 = 2λ, while
for NN-II should be set as β1 = 2λ, β2 = β3 = λ. Clearly, transforming NN-I to NN-II, or the converse, entails just alternating a few gain factors and the
starting points of some connections.

where Q = ET w−AT y, λ > 0 and ỹ is as in NN-II. It is easy
to show that the equilibrium point set of the network may
not correspond to the solution set of the problem. Consider
a very simple problem in which x is a scalar and A = E =
1, b = f = 0. Clearly, the minimizer is x = 0. However, it is
easy to check that x = y = w = −1 is also an equilibrium
point of the network. So the performance of this network is
questionable.

From Section II, it is seen that solving (1) is equivalent to
solving the following minimax problem:

min
x∈X,s∈�

max
y∈Y,z∈�r

L(x, y, s, z) = yT (Ax − b) − zT (Cx − s)

=

(
x

s

)T (
AT −CT

0 I

) (
y

z

)
−

(
b

0

)T (
y

z

)
.

Then the two neural networks invented, respectively, in
[13] and [11] can also solve the problem. Specifically, their
dynamic equations become

d

dt

⎛
⎜⎜⎝

x

y

z

s

⎞
⎟⎟⎠ = −λ

⎛
⎜⎜⎝

x − x̄

y − ỹ

Cx − s

s − g�(s − z)

⎞
⎟⎟⎠ (6)

and

d

dt

⎛
⎜⎜⎝

x

y

z

s

⎞
⎟⎟⎠ = −λ

⎛
⎜⎜⎝

2(x − v)
y − ỹ

Cx − s

2(s − z̃)

⎞
⎟⎟⎠ (7)

where v = gX(x − AT ỹ + CT (z − Cx + s)), and the other
notations are the same as in NN-I and NN-II. Clearly, both of
the networks are more complex than NN-I and NN-II. At least,
they have one more state variable which entails more elements
in hardware implementation. In addition, the first one can not
guarantee the convergence to the solutions of the problem. For
example, consider a very simple and special problem

min ‖x‖1, subject to x ∈ X = �.

Then (6) becomes

d

dt

(
x

y

)
= −λ

(
y

y − g[−1,1](y + x)

)
.

It is easy to verify that when x0 = y0 = 1/2, the quantity
y + x will never exceed [−1, 1] and the solution is

{
x(t) = (cos λt − sin λt)/2
y(t) = (sin λt + cos λt)/2.

Obviously, the state trajectory x(t) will never converge to
the desired value 0.

IV. Stability Analysis

In this section we will show that both of the neural network
NN-I and NN-II are stable and globally convergent to a solu-
tion of problem (1). First, some preliminaries are introduced.

Lemma 2: Consider the function gX(·) defined in (3).

1) For any x ∈ �n and any v ∈ X
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(gX(x) − x)T (v − gX(x)) ≥ 0.

For any x, y ∈ �n

‖gX(x) − gX(y)‖2 ≤ ‖x − y‖2.

2) The function ψ(x) = ‖x − gX(x)‖2
2 is convex and

continuously differentiable on �n, whose gradient is
given by ∇ψ(x) = 2(x − gX(x)).

The same properties hold for the functions gY (·) and g�(·).
Proof: 1) See [23]. 2) See Theorem 2.2 in [26].

Note that (4) can be equivalently put into the following
variational inequality form [23]:

⎧⎪⎨
⎪⎩

(x − x∗)T (AT y∗ − CT z∗) ≥ 0 ∀x ∈ X

(y − y∗)T (−Ax∗ + b) ≥ 0 ∀y ∈ Y

(z − Cx∗)T z∗ ≥ 0 ∀z ∈ �.

(8)

Theorem 2: A point x∗ ∈ �n is a solution of problem (1)
if and only if there exists y∗ ∈ �m and z∗ ∈ �r such that they
constitute an equilibrium point of NN-I and NN-II.

Note that there exists at least one finite point in the
equilibrium sets of NN-I and NN-II since it is assumed that
there exists at least one finite solution to the problem (1).

In the rest of this section, for convenience the triple
(xT , yT , zT )T is often denoted by u, ((x∗)T , (y∗)T , (z∗)T )T is
often denoted by u∗, and so on. According to Theorem 1, it
is trivial to show one of the significant properties of the two
networks NN-I and NN-II.

Lemma 3: For any initial point u0 ∈ �n+m+r, there exists a
unique continuous solution u(t) for both NN-I and NN-II for
t ∈ [t0, τ) with u(t0) = u0.

Proof: By using Lemma 2, it is easy to prove that the
right-hand-sides of both NN-I and NN-II are Lipschitz con-
tinuous in �n+m+r. Then the results follow from the existence
theory of ordinary differential equations [27].

A. Neural Network I

Lemma 4: The following function is convex and continu-
ously differentiable on �n+m+r:

φ(u) =
1

2
(‖x − AT y + CT z‖2

2 − ‖x − AT y + CT z − x̄‖2
2).

Proof: In view of Lemma 2 it is trivial to show that φ(u) is
continuously differentiable on �n+m+r whose gradient is given
by

∇φ(u) =

⎛
⎝ x̄

−Ax̄

Cx̄

⎞
⎠ .

For any u, u′ ∈ �n+m+r

(u − u′)T (∇φ(u) − ∇φ(u′))

=(x − x′)T (x̄ − x̄′) + (y − y′)T (−Ax̄ + Ax̄′)

+ (z − z′)T (Cx̄ − Cx̄′)

=(x̄ − x̄′)T ((x − AT y + CT z − x̄)

− (x′ − AT y′ + CT z′ − x̄′)) + ‖x̄ − x̄′‖2
2

≥(x̄ − x̄′)T (x − AT y + CT z − x̄)

+ (x̄′ − x̄)T (x′ − AT y′ + CT z′ − x̄′)

≥0

where x̄′ = gX(x′ −AT y′ +CT z′) and the last inequality follows
from Lemma 2. Therefore φ(u) is convex on �n+m+r [3].

Theorem 3: With any initial point u0 ∈ �n+m+r, the neural
network NN-I is stable in the sense of Lyapunov and converges
to a solution of (1).

Proof: From Lemma 3, there exists a unique continuous
solution u(t) to the neural network NN-I for t ∈ [t0, τ) with
u(t0) = u0. Define the following Lyapunov function with
respect to u(t):

V1(u(t)) =
1

2
‖u − u∗‖2

2 + φ(u) − φ(u∗) − (u − u∗)T ∇φ(u∗)

where u∗ stands for a finite equilibrium point of NN-I and
φ(u(t)) is defined in Lemma 4. The convexity of φ(u) implies
that V1(u) ≥ 1

2‖u − u∗‖2
2. By Lemma 2 we have

(x̄ − x∗)T (x − AT y + CT z − x̄) ≥ 0

(ȳ − y∗)T (y + Ax̄ − b − ȳ) ≥ 0

(z̄ − Cx∗)T (Cx̄ − z − z̄) ≥ 0.

By (8) we have

(x̄ − x∗)T (AT y∗ − CT z∗) ≥ 0

(ȳ − y∗)T (−Ax∗ + b) ≥ 0

(z̄ − Cx∗)T z∗ ≥ 0.

Adding the two sets of equations gives

(x̄ − x∗)T (x − AT y + CT z − x̄ + AT y∗ − CT z∗) ≥ 0

(ȳ − y∗)T (y + Ax̄ − ȳ − Ax∗) ≥ 0

(z̄ − Cx∗)T (Cx̄ − z − z̄ + z∗) ≥ 0.

Making use of these inequalities we can calculate the time
derivative of V1(u)/λ along the trajectory of neural network
NN-I as follows:
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1

λ

dV1(u(t))

dt
=

1

λ
∇V1(u)T

du

dt

= − (x − x̄)T (x − 2x∗ + x̄) − 2(y − ȳ)T (y − y∗

− Ax̄ + Ax∗) − 2(Cx̄ − z̄)T (z − z∗ + C(x̄ − x∗))

= − ‖x − x̄‖2
2 − (x − x̄)T (2x̄ − 2x∗)

− 2‖y − ȳ‖2
2 − 2(y − ȳ)T (ȳ − y∗ − Ax̄ + Ax∗)

− 2‖Cx̄ − z̄‖2
2 − 2(Cx̄ − Cx∗)T (z − z∗ + z̄ − Cx∗)

− 2(z̄ − Cx∗)T (−z + z∗ − z̄ + Cx∗)

= − ‖x − x̄‖2
2 − 2‖y − ȳ‖2

2 − 2‖Cx̄ − z̄‖2
2

− 2(x̄ − x∗)T (x − x̄) − 2(ȳ − y∗)T (y − ȳ)

− 2(y − y∗)T (−Ax̄ + Ax∗) − 2(ȳ − y∗)T (Ax̄ − Ax∗)

− 2(x̄ − x∗)T (CT z − CT z∗) − 2(z̄ − Cx∗)T (Cx̄ − Cx∗)

− 2(z̄ − Cx∗)T (−z + z∗ − z̄ + Cx∗)

= − ‖x − x̄‖2
2 − 2‖y − ȳ‖2

2 − 2‖Cx̄ − z̄‖2
2

− 2(x̄ − x∗)T (x − x̄ − AT y + AT y∗ + CT z − CT z∗)

− 2(ȳ − y∗)T (y − ȳ + Ax̄ − Ax∗)

− 2(z̄ − Cx∗)T (Cx̄ − z + z∗ − z̄)

≤ − ‖x − x̄‖2
2 − 2‖y − ȳ‖2

2 − 2‖Cx̄ − z̄‖2
2 ≤ 0.

Hence, the neural network NN-I is stable in the sense
of Lyapunov. Clearly, dV1/dt = 0 if and only if u is an
equilibrium point of neural network NN-I.

Since V1(u) ≥ ‖u − u∗‖2
2/2, any level set of V1(u), for

example, L = {u ∈ �n+m+r|V1(u) ≤ V1(u0)} is bounded. Then
u(t) ∈ L is bounded for all t ≥ t0. Therefore τ = +∞. It also
follows that for any initial point u0, there exists a convergent
subsequence {u(tk)} with t0 < t1 < t2 < · · · < tk < tk+1 < · · ·
such that

lim
k→∞

u(tk) = u†

where u† is an equilibrium point of NN-I. Finally, define
another Lyapunov function

V
†
1 (u) =

1

2
‖u − u†‖2

2 + φ(u) − φ(u†) − (u − u†)T ∇φ(u†).

It is easy to see that V
†
1 (u) decreases along the trajectory of

NN-I and satisfies V
†
1 (u†) = 0. Therefore, for any ε > 0, there

exists q > 0 such that, for all t ≥ tq

‖u(t) − u†‖2
2/2 ≤ V

†
1 (u(t)) ≤ V

†
1 (u(tq)) < ε.

Therefore, limt→∞ u(t) = u†. It follows that the neural
network is globally convergent to an equilibrium point, and
hence, a solution of problem (1).

B. Neural Network II

In view of Lemma 2 and similar to Lemma 4 we can prove
the following results.

Lemma 5: The following function is convex and continu-
ously differentiable on �n+m+r:

ψ(u) =
1

2
(‖y + Ax − b‖2

2 − ‖y + Ax − b − ỹ‖2
2

+ ‖Cx − z − z̃‖2
2)

whose gradient is given by

∇ψ(u) =

⎛
⎝AT ỹ + CT (Cx − z − z̃)

ỹ

−Cx + z + z̃

⎞
⎠ .

Theorem 4: With any initial point u0 ∈ �n+m+r, the neural
network NN-II is stable in the sense of Lyapunov and con-
verges to a solution of (1).

Proof: From Lemma 3, there exists a unique continuous
solution u(t) of NN-II for t ∈ [t0, τ) with u(t0) = u0. Define
the following Lyapunov function with respect to u(t):

V2(u(t)) =
1

2
‖u − u∗‖2

2 + ψ(u) − ψ(u∗) − (u − u∗)T ∇ψ(u∗)

where u∗ stands for a finite equilibrium point of NN-II and
ψ(u(t)) is defined in Lemma (5). The convexity of ψ(u)
implies that V2(u) ≥ 1

2‖u − u∗‖2
2. By Lemma 2, we have

(x̃ − x∗)T (x − AT ỹ + CT (z − Cx + z̃) − x̃) ≥ 0

(ỹ − y∗)T (y + Ax − b − ỹ) ≥ 0

(z̃ − Cx∗)T (Cx − z − z̃) ≥ 0.

By (8) we have

(x̃ − x∗)T (AT y∗ − CT z∗) ≥ 0

(ỹ − y∗)T (−Ax∗ + b) ≥ 0

(z̃ − Cx∗)T z∗ ≥ 0.

Adding the two sets of equations gives

(x̃ − x∗)T (x − AT ỹ + CT (z − Cx + z̃)

−x̃ + AT y∗ − CT z∗) ≥ 0

(ỹ − y∗)T (y + Ax − ỹ − Ax∗) ≥ 0

(z̃ − Cx∗)T (Cx − z − z̃ + z∗) ≥ 0.

Making use of these inequalities we can calculate the time
derivative of V2(u)/λ along the trajectory of neural network
NN-II as follows:
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1

λ

dV2(u(t))

dt
=

1

λ
∇V2(u)T

du

dt

= − 2(x − x̃)T (x − x∗ + AT ỹ − AT y∗

+ CT (Cx − z − z̃ + z∗)) − (y − ỹ)T (y − 2y∗ + ỹ)

− (Cx − z̃)T (2z − 2z∗ − Cx + z̃)

= − 2‖x − x̃‖2
2 − 2(x̃ − x∗)T (−x̃ + x∗ − AT ỹ + AT y∗

+ CT (−Cx + z + z̃ − z∗)) − 2(x − x∗)T (x̃ − x∗

+ AT ỹ − AT y∗ + CT (Cx − z − z̃ + z∗))

− ‖y − ỹ‖2
2 − (y − ỹ)T (2ỹ − 2y∗)

− ‖Cx − z̃‖2
2 − 2(Cx − Cx∗)T (z − z∗ + z̃ − Cx)

− 2(z̃ − Cx∗)T (−z + z∗ − z̃ + Cx)

= − 2‖x − x̃‖2
2 − ‖y − ỹ‖2

2 − ‖Cx − z̃‖2
2

− 2(x̃ − x∗)T (x − x̃ − AT ỹ + AT y∗

+ CT (−Cx + z + z̃ − z∗))

− 2(ỹ − y∗)T (Ax − Ax∗ + y − ỹ)

− 2(z̃ − Cx∗)T (−z + z∗ − z̃ + Cx)

≤ − 2‖x − x̃‖2
2 − ‖y − ỹ‖2

2 − ‖Cx − z̃‖2
2 ≤ 0.

The rest of the proof is similar to the proof of Theorem 3,
and is omitted here for brevity.

V. Special Cases

In this section, we consider solving some LAD problems
with different combinations of linear constraints, which have
been studied from the viewpoint of RNN in the literature.
The purpose is to compare the two new RNNs with existing
ones for solving the same problems. Since most of the RNNs
to be compared are theoretically guaranteed to be globally
convergent to correct solutions, the comparison criterion is
mainly the structural complexity (some preliminary compar-
isons for convergence rates based on numerical simulations
are presented in Section VI). It will be seen that the two
new RNNs are simpler than most existing ones for solving
variously constrained LAD problems, even for solving the
unconstrained problem. Moreover, for solving a particular
problem, another network will be derived from NN-I and NN-
II by changing some connections in them.

A. Equality + One-Sided Inequality + Bound Constraints

First, we are concerned with the following LAD problem:

min ‖Ax − b‖1

subject to Cx = d, Ex ≤ f, x ∈ X
(9)

where E ∈ �p×n, f ∈ �p and the other notations are the same
as in (1).

By noticing that Cx = d, Ex ≤ f can be written as

(
d

−∞
)

≤
(

C

E

)
x ≤

(
d

f

)

the two neural networks developed in previous sections can
well solve the problem. By introducing a new state variable
s ∈ �p associated with the inequality constraint Ex ≤ f , we
can derive the following neural network from NN-I:

d

dt

⎛
⎜⎜⎝

x

y

z

s

⎞
⎟⎟⎠ = −λ

⎛
⎜⎜⎝

x − x̄

2(y − ȳ)
2(Cx̄ − z̄)
2(Ex̄ − s̄)

⎞
⎟⎟⎠

where

x̄ = gX(x − AT y + CT z + ET s)
ȳ = gY (y + Ax̄ − b)
z̄ = g[d,d](Cx̄ − z)
s̄ = g(−∞,f ](Ex̄ − s).

In view of g[d,d](·) = d and g(−∞,f ](Ex̄ − s) = Ex̄ − s −
(−s + Ex̄ − f )+, where (·)+ = g�p

+
(·) with �p

+ standing for the
nonnegative quadrant of �p, by letting s = −w we have

NN-a:
d

dt

⎛
⎜⎜⎝

x

y

z

w

⎞
⎟⎟⎠ = −λ

⎛
⎜⎜⎝

x − x̄

2(y − ȳ)
2(Cx̄ − d)
2(w − w̄)

⎞
⎟⎟⎠

where

x̄ = gX(x − AT y + CT z − ET w)
ȳ = gY (y + Ax̄ − b)
w̄ = (w + Ex̄ − f )+.

Similarly, we can derive the following network from NN-II
for solving (9):

NN-b:
d

dt

⎛
⎜⎜⎝

x

y

z

w

⎞
⎟⎟⎠ = −λ

⎛
⎜⎜⎝

2(x − x̃)
y − ỹ

Cx − d

w − w̃

⎞
⎟⎟⎠

where

x̃ = gX(x − AT ỹ + CT (z − Cx + d) − ET w̃)
ỹ = gY (y + Ax − b)
w̃ = (w + Ex − f )+.

For convenience, the above two networks are, respectively,
termed NN-a and NN-b hereafter. Fig. 2 depicts their architec-
tures by block diagrams. In the figure, {eqi}p×n = E, {fq}p×1 =
f, {dk}r×1 = d and the other parameters are the same as in
Fig. 1. Obviously, like their predecessors, the two schemes
share the same structural complexity. Actually, from Fig. 2(b)
and (c), transforming NN-a to NN-b, or vice versa, entails just
changing six connecting lines and four gain factors, though the
summator connecting with the “OUT7” port [see Fig. 2(a)] is
redundant for NN-a but a must for NN-b.

Interestingly, it is found that another network can be also
used to solve the problem (9), whose dynamic equations are
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Fig. 2. Block diagrams of the neural networks NN-a, NN-b and NN-c. (a) Basic blocks with their input and output ports, where i = 1, · · · , n, j = 1, · · · , m,
k = 1, · · · , r and q = 1, · · · , p. (b)–(d) Illustrate how the blocks should be connected to constitute NN-a, NN-b and NN-c. The output ports surrounded by
dashed rectangles do not need to be connected with other ports in the corresponding configuration. The gain factors in (a) for NN-a should be set as β1 = λ,
β2 = β3 = β4 = 2λ, for NN-b should be set as β1 = 2λ, β2 = β3 = β4 = λ, and for NN-c should be set as β1 = β3 = 2λ, β2 = β4 = λ. Clearly, switching
between these networks entails just changing some connections and gain factors.

NN-c:
d

dt

⎛
⎜⎜⎝

x

y

z

w

⎞
⎟⎟⎠ = −λ

⎛
⎜⎜⎝

2(x − x̂)
y − ỹ

2(Cx̂ − d)
w − w̃

⎞
⎟⎟⎠

where

x̂ = gX(x − AT ỹ + CT z − ET w̃)
ỹ = gY (y + Ax − b)
w̃ = (w + Ex − f )+

and λ > 0. This network is called NN-c hereafter. A com-
parison between the dynamic equations of NN-c and NN-a
shows that for accomplish one iteration of computing, the
same number of mathematic operations such as summations
and multiplications are needed with appropriate computing
orders (actually, in NN-a x̄ should be computed before ȳ and
w̄ while in NN-c x̂ should be computed after ỹ and w̃). This
intuitive observation implies that circuits implementation of
the two models entails the same number of elements. Fig. 2(d)
illustrates the architecture of NN-c. A comparison between
Fig. 2(b) and Fig. 2(d) indicates that transforming from NN-a
to NN-c, or vice versa, entails just changing four connecting
lines and three gain factors. Likewise, from Fig. 2(c) and

Fig. 2(d) it can be seen that transforming from NN-b to NN-c,
or vice versa, entails just changing two connecting lines and
three gain factors. In this sense, the three networks NN-a, NN-
b and NN-c can compete with each other in terms of structural
complexity.

From Section IV we know that the two networks NN-
a and NN-b are both globally convergent to a solution of
the problem (9). We then investigate if NN-c also has this
property. First, it is trivial to show that its equilibrium point
set is identical to that of NN-a or NN-b, and that a point
u∗ = ((x∗)T , (y∗)T , (z∗)T , (w∗)T )T is an equilibrium point of
these networks if and only if it satisfies⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x∗ = gX(x∗ − AT y∗ + CT z∗ − ET w∗)

y∗ = gY (y∗ + Ax∗ − b)

Cx∗ = d

w∗ = (w∗ + Ex∗ − f )+.

(10)

These equations actually describe the optimality conditions
of the problem (9). Then we state the stability results of the
network NN-c.

Theorem 5: With any initial point u0 ∈ �n+m+r+p, the neural
network NN-c is stable in the sense of Lyapunov and converges
to a solution of (9).
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Proof: See Appendix.
To summarize, theoretically guaranteed performances of

NN-a, NN-b and NN-c for solving (9) are the same.
From Section III-B, it can be readily concluded that the

neural networks proposed in [34] and [13] may fail to solve
the problem (9), but the network in (7) can guarantee the
solvability theoretically. Readers can verify that solving this
problem is equivalent to solving the following minimax prob-
lem: minx∈X maxy∈Y,z∈�r ,w∈�p

+
L(x, y, z, w) where:

L(x, y, z, w) = yT (Ax − b) − zT (Cx − d) + wT (Ex − f ).

With this result, one can verify that the neural network
proposed in (7) reduces to NN-b exactly.

B. Bound Constraints Only

Recently, Xia and Kamel did some benchmark work in ap-
plying RNNs to parameter estimation [35], [36]. Specifically,
in [35], they considered solving the following LAD problem:

min ‖Ax − b‖1

subject to x ∈ X,
(11)

where the notations are the same as in (1). The following so-
called cooperative neural network was proposed to solve the
problem:

d

dt

(
x

y

)
=

−λ

(
x − gX(x − AT y) + AT (gY (y + Ax − b) − y)
y − gY (y + Ax − b) − A(gX(x − AT y) − x)

)

(12)

where λ > 0. As the problem (11) is a special case of the
problem (9), all of the three neural networks NN-a, NN-b and
NN-c can be applied to solve the problem. Specifically, the
first one degenerates to

d

dt

(
x

y

)
= −λ

(
x − gX(x − AT y)

2(y − gY (y + AgX(x − AT y) − b))

)
(13)

and both of the other two degenerate to

d

dt

(
x

y

)
= −λ

(
2(x − gX(x − AT gY (y + Ax − b)))

y − gY (y + Ax − b)

)
. (14)

One should keep in mind that gX in (12) and (13) and (12)
and (14) are not needed to be implemented twice. Even with
this consideration, it is easy to see that both (13) and (14) are
simpler than (12).

Another constrained LAD problem for parameter estimation
formulated by Xia and Kamel is as follows [36]:

min ‖Ax − s − b‖1

subject to s ∈ S,
(15)

where the notations are the same as in (1) with a new variable
s and a new box set S. A neural network was proposed for
solving it

d

dt

⎛
⎝x

s

y

⎞
⎠ =

−λ

⎛
⎝ AT gY (y + Ax − s − b)

s − gS (s + y) + y − gY (y + Ax − s − b)
y + AAT y − gY (y + Ax − s − b) − s + gS (s + y)

⎞
⎠
(16)

where λ > 0. Again, all of the three neural networks NN-a,
NN-b and NN-c can be applied to solve the problem (15).
Specifically, the first one degenerates to

d

dt

⎛
⎝x

s

y

⎞
⎠ =

−λ

⎛
⎝ AT y

s − gS (s + y)
2(y − gY (y + A(x − AT y) − gS (s + y) − b))

⎞
⎠

(17)

and the other two degenerate to

d

dt

⎛
⎝x

s

y

⎞
⎠ = −λ

⎛
⎝ 2AT gY (y + Ax − s − b)

2(s − gS (s + gY (y + Ax − s − b)))
y − gY (y + Ax − s − b)

⎞
⎠ . (18)

Clearly, both networks are simpler than (16).

C. No Constraints

Finally, we consider the unconstrained LAD problem

min ‖Ax − b‖1. (19)

The following network was designed in [33] for solving it:

d

dt

(
x

y

)
= −λ

(
AT gY (y + Ax − b)

y − gY (y + Ax − b) + AAT y

)
(20)

where λ > 0. Obviously, the two models (13) and (14)
can solve this problem. By setting X = �n, their dynamic
equations are, respectively, simplified to be

d

dt

(
x

y

)
= −λ

(
AT y

2(y − gY (y + A(x − AT y) − b))

)
(21)

and

d

dt

(
x

y

)
= −λ

(
2AT gY (y + Ax − b)
y − gY (y + Ax − b)

)
. (22)

Comparisons show that both of the two new models possess
lower structural complexity than (20) by noticing that in (20)
an additional term AAT y has to be calculated whereas in (21)
or (22) this is unnecessary.
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VI. Numerical Simulations

To illustrate the theoretical results obtained in previous
sections and compare the performances of the RNNs proposed
in this paper, we have simulated their dynamic systems to solve
some LAD problems in MATLAB.

Experiment 1: Consider an unconstrained LAD problem
(19) with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0
−0.5 1 −.5
0.5 −1 1
1 −1 1
1 −0.5 0.5
2 −1 1
1 −1 1

0.5 −1 1
0.5 −0.75 1
2 −2 3
0 −1 1
1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−0.5

1
1

0.5
1
0

−0.5
−0.25
−3
0

−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This problem is highly degenerate as there are 30
degenerate base points [30]. The optimal solution ob-
tained by several efficient numerical algorithms is x∗ =
(0.7142857, −0.7142857, −1.1428571)T with the objective
function value 5.78571 [30]. We simulated the two neural
networks (21) and (22) to solve the problem. It was observed
that from any initial point in �15 the outputs always converged
to this solution. Fig. 3 depicts the states of the networks with
respect to the time t with λ = 1000 from a random (but
identical for the two networks) initial point.

We then considered solving the same problem with an
addition constraint 0 ≤ 2x1 − x2 ≤ 2 by using NN-I
and NN-II. Simulations indicated that they always converged
to the solution x∗ = (0.6250, −0.7500, −1.1250)T with the
optimal objective function value 5.8125. Fig. 4 depicts the
error function ‖x(t) − x∗‖2 for the two networks from four
random initial points. It is seen that the value of this function
decreases to zero very fast in any case.

Experiment 2: In Section III, we have shown that the
proposed two neural networks NN-I and NN-II possess the
same structural complexity, while in Section IV we have
shown that they possess the same stability results. But their
convergence rates were not compared, though all of them
should be greatly faster than numerical LAD solvers and this
issue is not a so important criterion for judging the validity
of the networks. Anyway, for the sake of completeness, we
would like to do an investigation in this regard. But it was
found to be difficult to derive such results theoretically for
continuous neural networks. So, we compared the convergence
rates on a variety of problems, which is a strategy often
adopted for comparing the speeds of numerical algorithms for
solving mathematical problems. Note that the required time for
accomplishing a task relies on the scaling factor λ; actually
the larger the scaling factor, the less the time. Without loss of
generality, in simulations λ was always set to one. Therefore,
in what follows, a time unit denotes 1/λ, where λ can be very
large, e.g., 106.

We considered solving the LAD problem in the general
form of (1) with different coefficients. Random numbers were
generated uniformly between −1 and 1 and then assigned to
the elements of A and C. bi (i = 1, . . . , m) was the sum of
the corresponding row of A plus a number generated from
normal distribution with mean zero and standard deviation 3,
denoted by �(0, 3). li (i = 1, . . . , r) (or hi) was the sum
of the corresponding row of C minus (or plus) a number
generated by max{0, �(0, 3)}. ρi = −1, �i = 1 (i = 1, . . . , n).
Six combinations of n, m, r were considered (see Table I) and
in each combination 30 sets of coefficients were generated in
above way.

As indicated in Section III-B, the network (7) can also solve
these testing problems, though its circuits implementation is
more expensive. For comparison purpose, it was simulated on
the problems, too. On each problem, for NN-I and NN-II,
simulations terminated when either t ≥ 1000 time units or

(‖x − gX(x − AT y + CT z)‖1 + ‖y − gY (y + Ax − b)‖1

+ ‖Cx − g�(Cx − z)‖1)/(n + m + r) ≤ 10−4.

The same stopping criteria were adopted for the network
(7), but the above equation was replaced with

(‖x − gX(x − AT y + CT z)‖1 + ‖Cx − s‖1

+ ‖y − gY (y + Ax − b)‖1

+ ‖s − g�(Cx − z)‖1)/(n + m + 2r) ≤ 10−4.

It is not difficult to check that the left sides of the above two
inequalities are equal to zero if and only if x is a solution of
the problem (1). The components of the initial points for the
networks were uniformly and randomly generated in [−1, 1].

The amount of time units required by each run was recorded
and the mean µ and standard deviation σ of this quantity over
30 runs for each problem set are shown in Table I. It was found
that the three networks successfully achieved the prescribed
precision 10−4 within 1000 time units on most problem sets,
except on the fourth set (see footnotes below the table for
details). That is why the running time of any network for this
set of problems is much greater than for other sets in Table I.

The last two columns of Table I show the comparison results
of the required time units for the networks. Paired t-tests were
carried out on each problem set between the three networks.
If the amounts of time units were significantly different for
two networks on a problem set (p < 0.01), then a tailed
t-test was carried out to estimate which is smaller. It was
found that the running time of NN-I was less than that of NN-
II and (7) on most problem sets (p < 10−4) except on the first
set where no significant difference was found (p > 0.76). In
addition, the running time of the network (7) was greater than
that of NN-I but less than that of NN-II on four sets. This
is not strange by considering that the network computation
is a parallel process, and it is possible that a more complex
architecture solves a problem faster. From Table I, it can be
seen that when n > m, the difference between the three
networks was negligible; and when n ≤ m, NN-I was faster
than the other two. Moreover, when the number of constraints
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Fig. 3. States of the neural networks (21) and (22) with respect to the time t in solving the unconstrained LAD problem in Experiment 1. λ was set to 1000
for both networks. It is seen that the states of any network achieve steady values as t increases. (a) Neural Network (21). (b) Neural Network (22).

Fig. 4. Error function for the neural networks NN-I and NN-II with respect to the time t starting from four random initial points in solving the constrained
LAD problem in Experiment 1 (same color in the two insets corresponds to the same initial point. Please refer to the online version of this paper for colors).
λ was set to 1000 for both networks. It is seen that this function for any network decreases to zero rapidly with respect to t.

TABLE I

Comparisons Between NN-I, NN-II, and Network (7)

Problem Set NN-I NN-II (7) Conclusion p-Value
µ σ µ σ µ σ

n = 100, m = 20, r = 20 24.18 33.56 23.66 31.96 21.53 29.31 – > 0.76
n = 500, m = 20, r = 20 9.42 0.13 10.25 0.28 9.71 0.09 NN-I< (7) <NN-II < 10−10

n = 1000, m = 20, r = 20 9.20 0.11 10.22 0.23 9.77 0.12 NN-I< (7) <NN-II < 10−9

n = 100, m = 100, r = 1001 539.0 377.8 773.5 346.6 753.2 302.1 NN-I<NN-II 6.1 × 10−5

n = 100, m = 500, r = 500 38.94 12.31 86.74 31.32 67.04 22.15 NN-I< (7) <NN-II < 0.004
n = 100, m = 1000, r = 1000 30.86 7.84 80.28 19.80 52.78 11.77 NN-I< (7) <NN-II < 10−8

TABLE II

Comparisons Between NN-a, NN-b, and NN-c

Problem set NN-a NN-b NN-c Conclusion p-value
µ σ µ σ µ σ

n = 100, m = 20, r = 20, p = 20 9.88 0.11 9.54 0.10 9.40 0.12 NN-c<NN-b<NN-a < 10−8

n = 500, m = 20, r = 20, p = 20 9.57 0.08 9.76 0.08 9.52 0.10 NN-a<NN-b, NN-c<NN-b < 10−9

n = 1000, m = 20, r = 20, p = 20 9.36 0.09 9.80 0.07 9.54 0.07 NN-a<NN-c<NN-b < 10−8

n = 500, m = 20, r = 100, p = 100 10.24 0.07 10.24 0.04 9.92 0.06 NN-c<NN-a, NN-c<NN-b < 10−17

n = 1000, m = 20, r = 200, p = 200 10.46 0.04 10.55 0.03 10.19 0.04 NN-c<NN-a<NN-b < 10−9

n = 100, m = 100, r = 20, p = 20 115.77 58.83 134.22 68.87 123.15 51.31 – > 0.03
n = 100, m = 500, r = 20, p = 20 85.58 25.57 147.24 45.57 206.70 100.11 NN-a<NN-b<NN-c < 10−3

n = 100, m = 1000, r = 20, p = 20 92.05 20.22 175.38 40.71 229.44 92.02 NN-a<NN-b<NN-c < 0.003
n = 100, m = 100, r = 20, p = 802 158.37 95.89 202.26 122.00 215.44 140.47 NN-a<NN-b, NN-a<NN-c < 10−3

n = 100, m = 500, r = 20, p = 803 191.47 111.68 304.42 138.21 365.71 142.43 NN-a<NN-b<NN-c < 0.002
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are relatively large with respect to the number of variables, all
networks require large amounts of time units.

Experiment 3: We were also interested in the rates of the
neural networks NN-a, NN-b, and NN-c discussed in Section
V-A for solving the LAD problems in the form of (9). Thus,
these dynamic systems were simulated on computers to solve
a variety of randomly generated problems. Table II lists the
statistics of the recorded time units required by the networks.
The coefficients of the problem (9) were generated as follows.
The elements of A, C and E were uniformly generated
between −1 and 1. The element bi (i = 1, . . . , m) was the sum
of the corresponding row of A plus a number generated from
normal distribution with mean zero and standard deviation 3,
denoted by �(0, 3). The element di (i = 1, . . . , r) was the
sum of the corresponding row of C plus a number generated
in �(0, 3), and the element di (i = 1, . . . , p) was the sum
of the corresponding row of E minus a number generated in
�(0, 3). ρi = 0, �i = +∞ (i = 1, . . . , n). Ten combinations
of n, m, r, p were considered and in each combination 30 sets
of coefficients were generated. For each problem, the initial
point was generated in [−1, 1]n+m+r+p and the same for NN-a,
NN-b and NN-c. Simulations terminated when either t ≥ 500
time units or

(‖x − gX(x − AT y + CT z − ET w)‖1 + ‖Cx − d‖1

+ ‖y − gY (y + Ax − b)‖1 + ‖w − (w + Ex − f )+‖1)

/(n + m + r + p) ≤ 10−4.

As in Experiment 2, the scaling factor λ was set to one.
The amount of time units required by each run was recorded

and the mean µ and standard deviation σ of this quantity over
30 runs for each problem set are shown in Table II. The three
networks successfully achieved the prescribed precision 10−4

within 500 time units on most problem sets, except on the last
two sets (see footnotes below the table for details).

The results of paired t-tests between the three networks on
each problem set are shown in the last two columns of Table
II. It is seen that when n ≥ m and the number of constraints
is relatively small with respect to the number of variables,
the amounts of time units for the three networks are all small
and the differences between them are negligible; when n ≤ m

and the number of constraints is relatively large with respect
to the number of variables, the amounts of time units for the
networks are all large and NN-a is faster than the other two.

VII. Conclusion

We have designed a set of RNNs for solving LAD prob-
lems (also called L1 minimization problems) with various
combinations of linear constraints. If two-sided inequality
constraints are present, two neural networks with the same
structural complexity, called NN-I and NN-II, respectively,
can both solve the problem. If the inequality constraints
are one-sided, two networks as special cases of NN-I and
NN-II can solve the problem, which are called NN-a and NN-
b, respectively. In addition, for solving this particular problem,
another network sharing the same structural complexity with
NN-a and NN-b, called NN-c, was also found to be competent.

The three networks NN-a, NN-b and NN-c can be tailored to
new models for solving various special LAD problems, and
these networks are often simpler than the counterparts in the
literature in terms of structural complexity. Moreover, all of
the networks designed in this paper can solve degenerate LAD
problems naturally without resort to additional efforts, which
is in contrast to numerical algorithms.

The design of several models for solving same problem
takes advantage of the fact that keeping blocks of an RNN
intact while changing connections between them can lead
to new networks with similar structural complexity. This
simple idea has inspired two new RNNs for solving linear
or quadratic programming problems recently [20], [21]. Here
another successful application is witnessed.

Though all of the RNNs designed in this paper were
rigorously shown to be capable of solving the LAD problems,
the convergence rates were not analyzed. Some preliminary
numerical simulations predicted that in general NN-I was
faster than NN-II, while NN-a was faster than NN-b and NN-c.
Anyway, it is believed that all of such hardware solvers could
run extremely faster than conventional numerical algorithms
that are executed on digital computing equipments.

Appendix

Proof of Theorem 5: Similar to Lemma 3, it is easy to
prove that for any initial point u0, there exists a unique
continuous solution u(t) = (x(t)T , y(t)T , z(t)T , w(t)T )T of NN-
c for t ∈ [t0, τ) with u(t0) = u0. Similar to Lemma 4 it can be
proved that the following function is convex and continuously
differentiable on �n+m+r+p:

η(u) =
1

2
(‖y + Ax − b‖2

2 − ‖y + Ax − b − ỹ‖2
2

+ ‖w + Ex − f‖2
2 − ‖w + Ex − f − w̃‖2

2)

whose gradient is given by

∇η(u) =

⎛
⎜⎜⎝

AT ỹ + ET w̃

ỹ

0
w̃

⎞
⎟⎟⎠ .

Define a Lyapunov function with respect to u(t)

V3(u(t)) =
1

2
‖u − u∗‖2

2 + η(u) − η(u∗) − (u − u∗)T ∇η(u∗)

where u∗ stands for a finite equilibrium point of NN-c. The
convexity of η(u) implies that V3(u) ≥ 1

2‖u − u∗‖2
2. Based on

the equivalence between the projection equations in (10) and
variational inequalities [23], we can have

(x̂ − x∗)T (ET w∗ + AT y∗ − CT z∗) ≥ 0

(ỹ − y∗)T (−Ax∗ + b) ≥ 0

(w̃ − w∗)T (−Ex∗ + f ) ≥ 0.
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By Lemma 2, we have

(x̂ − x∗)T (x − AT ỹ + CT z − ET w̃ − x̂) ≥ 0

(ỹ − y∗)T (y + Ax − b − ỹ) ≥ 0

(w̃ − w∗)T (w + Ex − f − w̃) ≥ 0.

Adding these equations gives

(x̂ − x∗)T (x − AT ỹ + CT z − ET w̃ − x̂ + ET w∗

+AT y∗ − CT z∗) ≥ 0

(ỹ − y∗)T (y + Ax − ỹ − Ax∗) ≥ 0

(w̃ − w∗)T (w + Ex − w̃ − Ex∗) ≥ 0.

With similar algebraic manipulations as in the proofs of
Theorems 3 and 4, it can be reasoned that

1

λ

dV3(u(t))

dt

= − 2(x − x̂)T (x − x∗ + AT ỹ − AT y∗ + ET w̃ − ET w∗)

− (y − ỹ)T (y − 2y∗ + ỹ) − 2(Cx̂ − d)T (z − z∗)

− (w − w̃)T (w − 2w∗ + w̃)

= − 2‖x − x̂‖2
2 − ‖y − ỹ‖2

2 − ‖w − w̃‖2
2

− 2(x̂ − x∗)T (x − x̂ − AT ỹ + AT y∗ − ET w̃ + ET w∗

+ CT z − CT z∗) − 2(ỹ − y∗)T (y − ỹ + Ax − Ax∗)

− 2(w̃ − w∗)T (w − w̃ + Ex − Ex∗)

≤ − 2‖x − x̂‖2
2 − ‖y − ỹ‖2

2 − ‖w − w̃‖2
2 ≤ 0.

Therefore, the network NN-c is stable in the sense of
Lyapunov. Since V3(u) ≥ ‖u − u∗‖2

2/2, any level set of V3(u),
for example, L = {u ∈ �n+m+r|V3(u) ≤ V3(u0)} is bounded.
Then, u(t) ∈ L is bounded for all t ≥ t0. Therefore, τ = +∞.

According to the LaSalle invariance principle, u(t)
converges to the largest invariant set M in {u ∈
�n+m+r+p|dV3(u)/dt = 0}. In what follows, we show M = U∗,
where U∗ denotes the equilibrium point set of the network.
Clearly, any point in U∗ also belongs to M. Consider any
point u ∈ M. Since dV3/dt = 0, then x = x̂, y = ỹ and w = w̃

from above analysis, which implies dx/dt = −2λ(x − x̂) =
0, dy/dt = −λ(y − ỹ) = 0 and dw/dt = −λ(w − w̃) = 0.
It follows that x is in the steady state (a constant), so is x̂.
Denote Cx̂ − d by c where c is a constant. If c �= 0, then
dz/dt = −2λc and z → ∞ when t → +∞, which contradicts
the boundedness of u(t). Consequently, c = 0 and dz/dt = 0.
It follows that u ∈ U∗. Hence, M = U∗.

The rest of the proof is similar to the proof of Theorem 3,
and is omitted here.
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