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The functional properties of neurons in the primary visual cortex (V1)
are thought to be closely related to the structural properties of this net-
work, but the specific relationships remain unclear. Previous theoretical
studies have suggested that sparse coding, an energy-efficient coding
method, might underlie the orientation selectivity of V1 neurons. We
thus aimed to delineate how the neurons are wired to produce this
feature. We constructed a model and endowed it with a simple Hebbian
learning rule to encode images of natural scenes. The excitatory neurons
fired sparsely in response to images and developed strong orientation
selectivity. After learning, the connectivity between excitatory neuron
pairs, inhibitory neuron pairs, and excitatory-inhibitory neuron pairs
depended on firing pattern and receptive field similarity between the
neurons. The receptive fields (RFs) of excitatory neurons and inhibitory
neurons were well predicted by the RFs of presynaptic excitatory neu-
rons and inhibitory neurons, respectively. The excitatory neurons formed
a small-world network, in which certain local connection patterns were
significantly overrepresented. Bidirectionally manipulating the firing
rates of inhibitory neurons caused linear transformations of the firing
rates of excitatory neurons, and vice versa. These wiring properties and
modulatory effects were congruent with a wide variety of data measured
in V1, suggesting that the sparse coding principle might underlie both
the functional and wiring properties of V1 neurons.
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Functional and Wiring Properties of V1 Neurons 105

1 Introduction

Revealing the functional properties of visual neurons and their wiring pat-
tern is key to understanding the working mechanisms of the visual sys-
tem. One of the greatest discoveries about the functions of neurons in the
mammalian primary visual cortex (V1) comes from Hubel and Wiesel’s ex-
periments in which a large portion of them were found to be orientation
or direction selective (Hubel, 1959; Hubel & Wiesel, 1962). This has been
attributed to the sparse activity of neurons in response to visual stimuli
(Olshausen & Field, 1996, 1997).

Over the past 20 years, technical advances have enabled researchers to
probe the topology of the networks formed by V1 neurons. We now know
that the wiring pattern of layer 2/3 neurons in the rodent V1 is highly non-
random (Alonso & Martinez, 1998; Bock et al., 2011; Cossell et al., 2015;
Hofer et al., 2011; Ko et al., 2011; Yoshimura, Dantzker, & Callaway, 2005).
For instance, the connection probability between two pyramidal (PYR) ex-
citatory neurons depends on their preferred orientation difference (Hofer
et al., 2011; Ko et al., 2011), and the connection strength between two PYR
neurons correlates with their response similarity and receptive field (RF)
similarity (Cossell et al., 2015). However, it remains unclear how these
wiring properties emerge and how they are related to the functions of
neurons

To address these unanswered questions, it would be helpful to have a
simple, biologically plausible, and sensitive learning model that is based
on few assumptions and is capable of unifying previous data while predict-
ing new connectivity patterns. As a preliminary requirement, such a model
should incorporate the emergence of orientation selectivity of V1 neurons.
Sparse coding models (Olshausen & Field, 1996, 1997) and related indepen-
dent component analysis models (Bell & Sejnowski, 1997) are able to repli-
cate this functional property. They often have a two-layer structure where
the first layer contains visible units corresponding to image pixels and the
second layer contains latent units corresponding to V1 neurons. Some of
these models either do not consider the dependence between latent units
(Bell & Sejnowski, 1997; Lee, Battle, Raina, & Ng, 2006; Olshausen & Field,
1996, 1997) or do not model the dependence by explicit connections (Gar-
rigues & Olshausen, 2010; Hyvärinen, Hoyer, & Inki, 2001), which makes it
impossible to compare the models with cortical circuits in terms of struc-
ture. A nonfactorial sparse coding model (Garrigues & Olshausen, 2008)
considers lateral connections between neurons, but the model lacks biolog-
ical plausibility. A more biologically plausible model assuming lateral con-
nections between neurons refers to the locally competitive network (LCN)
(Rozell, Johnson, Baraniuk, & Olshausen, 2008). Acombination of Hebb rule
and anti-Hebb rule can be used by the LCN to learn the oriented bar-like RFs
of V1 neurons (Brito & Gerstner, 2016). A spiking model equipped with lo-
cal plasticity rules, named SAILnet (Zylberberg, Murphy, & DeWeese, 2011)
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106 X. Hu and Z. Zeng

was shown to be able to not only replicate the bar-like RFs of V1 neurons but
also log-normal-like distributions of inhibitory connection weight between
excitatory neurons. Similar distributions of synaptic efficacy have been ob-
served in the brain (Buzsaki & Mizuseki, 2014; Song, Sjostrom, Reigl, Nel-
son, & Chklovskii, 2005).

The aforementioned models do not differentiate between excitatory neu-
rons and inhibitory neurons. Some excitatory-inhibitory models (Brunel,
2016; Carlson, Richert, Dutt, & Krichmar, 2013; Miner & Triesch, 2016; Mon-
tangie, Miehl, & Gjorgjieva, 2020) have been shown to be able to replicate
either the orientation selectivity of V1 neurons or wiring features of cor-
tical neuron—for example, log-normal-like distribution of the connection
strength (Song et al., 2005) and network motifs (Perin, Berger, & Markram,
2011; Song et al., 2005) among PYR neurons, but not both. We are aware
of only one excitatory-inhibitory model (King, Zylberberg, & DeWeese,
2013) that related the orientation selectivity of V1 neurons to their connec-
tivity by taking structured visual input. But in that study, only the con-
nections between excitatory-inhibitory pairs were analyzed with respect
to the RFs of neurons. In addition, the model assumes no lateral connec-
tions between excitatory neurons and therefore cannot be used directly to
study the wiring features among excitatory neurons reported in animal
studies (Cossell et al., 2015; Perin et al., 2011). In fact, many computa-
tional studies, including most of those already noted (Brunel, 2016; Carl-
son et al., 2013; King et al., 2013; Miner & Triesch, 2016), do not assume
existence and plasticity of all types of connections: excitatory-to-excitatory
(E-to-E), excitatory-to-inhibitory (E-to-I), inhibitory-to-excitatory (I-to-E),
and inhibitory-to-inhibitory (I-to-I) connections. It is yet to be known if the
wiring features of V1 neurons could emerge in a fully learnable model.

We extended the LCN (Rozell et al., 2008) into an excitatory–inhibitory
network (see Figure 1A) and adopted the Hebb rule (Brito & Gerstner,
2016) to learn all types of connections given natural images as stimuli. The
model replicated numerous wiring properties of V1 neurons discovered in
recent years and made many interesting predictions that can now be tested
experimentally.

2 Results

2.1 Model Structure and Learning. We aimed to construct a simple
model based on very few reasonable biological assumptions. First, the ratio
of excitatory neurons to inhibitory neurons is approximately 4:1 (Markram
et al., 2004; Pfeffer, Xue, He, Huang, & Scanziani, 2013; Sillito, 1975). Sec-
ond, the firing rates of most inhibitory neurons are higher than those of
excitatory neurons (Atallah, Bruns, Carandini, & Scanziani, 2012; Hofer
et al., 2011; Kerlin, Andermann, Berezovskii, & Reid, 2010; Tateno, Harsch,
& Robinson, 2004). Third, the sum of the incoming connection strengths
to any excitatory neuron is approximately the same. Fourth, the average
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Functional and Wiring Properties of V1 Neurons 107

connection strengths from excitatory neurons to inhibitory neurons and
from inhibitory neurons to excitatory neurons are similar (Holmgren,
Harkany, Svennenfors, & Zilberter, 2003; Pfeffer et al., 2013) Fifth, the con-
nection probability, calculated as the number of detected connections di-
vided by the number of potential connections assayed, between excitatory
neurons was about 20% and the connection probability from excitatory neu-
rons to inhibitory neurons was about 90% (Cossell et al., 2015; Hofer et al.,
2011; Ko et al., 2011; Yoshimura et al., 2005).

Starting from these assumptions, we constructed a network consisting
of 1000 excitatory neurons and 250 inhibitory neurons (see Figure 1A). The
dynamic equations of the neurons are

τE
dzE

dt
= −zE + MEErE − MEIrI + W Ex + c, (2.1)

τI
dzI

dt
= −zI + MIErE − MIIrI + W Ix + c, (2.2)

where zE and zI denote the membrane potentials of the excitatory neurons
and inhibitory neurons, respectively; rE and rI denote the firing rates of
excitatory neurons and inhibitory neurons, respectively; x denotes visual
stimuli (small patches extracted from natural images in our experiment that
contain both positive and negative values); and c denotes input from other
brain areas. The firing rates rE and rI are determined by the activation func-
tions f E(zE) and f I(zI ), respectively (see Figure 1B). MPQ denotes the lateral
connections from neuron set Q to neuron set P (red and blue arrows in Fig-
ure 1A); P and Q can take two values, E and I, denoting excitatory neurons
and inhibitory neurons, respectively. W E and W I denote the feedforward
connections from visual stimuli x to excitatory neurons and inhibitory neu-
rons, respectively (gray arrows in Figure 1A). Therefore, each row of W E

denotes the RF of an excitatory neuron, and each row of W I denotes the RF
of an inhibitory neuron. All elements in MPQ are constrained to be nonneg-
ative, whereas the elements in W E and W I do not have this constraint. It is
possible to model the neural projection from the lateral geniculate nucleus
to V1 and separate W E and W I into matrices with nonnegative elements,
but that is not the focus of this study. The time constants τE and τI gov-
ern the evolving speeds of zE(t) and zI(t), respectively. Given the stimuli x
and external input c, the states of the neurons evolve over time according
to equations 2.1 and 2.2 (see Figure 1C). Throughout this letter, the charac-
ters in bold denote vectors or matrices, and the letters in plain type denote
scalars.

By distinguishing excitatory neurons and inhibitory neurons, the two
equations are essentially in the form of LCN (Rozell et al., 2008). This form
can trace back to the continuous Hopfield network (Hopfield, 1984). In bio-
logically detailed neuronal models, the synaptic inputs zE, zI, and c usually
denote potential, but here for convenience we assume that they have been
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108 X. Hu and Z. Zeng

Figure 1: The model and the overall results. (A) The model with several rep-
resentative excitatory (red) and inhibitory (blue) neurons. The red and blue
arrows represent excitatory and inhibitory synapses between neurons, re-
spectively. The bottom shows images input to neurons through feedforward
synapses (gray arrows). (B) Activation functions of the excitatory neurons and
inhibitory neurons. (C) States of 100 randomly selected sample neurons over
time. (D) Probability of connection dropping (to model synaptic pruning) as a
function of connection strength. Three functions are plotted: one-over-w, sig-
moid and piecewise-linear. (E) Probability density of the firing rates across 100
randomly sampled image patches after learning. The two solid curves denote
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Functional and Wiring Properties of V1 Neurons 109

multiplied by a constant to convert potential to firing rate and are therefore
measured in units of Hz (Dayan & Abbott, 2001). This makes the synaptic
weights dimensionless. Note that this view does not imply that zE, zI, and
c could only be nonnegative.

The neurons start to fire when the inputs exceed certain thresholds (De-
sai, Rutherford, & Turrigiano, 1999; Fuortes & Mantegazzini, 1962; Tateno
et al., 2004). Specifically, the activation functions for the excitatory and in-
hibitory neurons are defined as

fE(zE) = max(0, zE − λE), (2.3)

fI(zI ) = a × max(0, zI − λI )b, (2.4)

where λE and λI denote the spiking thresholds, and a and b specify the shape
of fI(zI ). Unless otherwise stated, all results reported in the letter were ob-
tained with λE = 5 Hz λI = 1 Hz, a = 5 and b = 0.8. Equations 2.3 and 2.4
model the response properties of the PYR excitatory neurons and the fast-
spiking interneurons in the visual cortex (presumably parvalbumin, or PV,
neurons, a subtype of GABAergic neurons), respectively. We tried differ-
ent parameters in equations 2.3 and 2.4 and obtained qualitatively similar
results as reported in this letter, if only the inhibitory neurons had higher
firing rates than the excitatory neurons.

All connection weights in equations 2.1 and 2.2 were updated according
to the Hebb rule after zE and zI converged to steady state. Let θpq denote the
connection weight from a unit q to a unit p. For lateral connections (red and
blue arrows in Figure 1A), p and q can be excitatory or inhibitory neurons.
After simulating equations 2.1 and 2.2, θpq was updated

θpq ← θpq + �pq, �pq = η〈rprq〉, (2.5)

two half-normal distributions fitted to the firing rates of excitatory neurons and
inhibitory neurons. (F) Connection weights from stimuli to 100 randomly se-
lected excitatory neurons (left) and 100 randomly selected inhibitory neurons
(right), respectively. Every patch corresponds to one row of W E or W I, with di-
mension 20 × 20. (G) Orientation tuning curves for two sample neurons. Top:
The first cell in the top of panel F. Bottom: The first cell in the bottom of panel F.
(H) The distribution of the OSI of excitatory (top) and inhibitory (bottom) neu-
rons. The median OSI was 0.95 for excitatory neurons and 0.32 for inhibitory
neurons. (I) RFs of 100 randomly selected inhibitory neurons when the firing
thresholds of excitatory and inhibitory neurons were increased from 5 Hz and 1
Hz to 7 Hz and 8 Hz, respectively. In every simulation trial, about 7% excitatory
neurons and 6% inhibitory neurons were active. (J, K) Connection probability
and strengths, respectively, between neurons. One hundred samples are shown
for each type of connection in (K). Red lines indicate medians. Best viewed in
color.
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110 X. Hu and Z. Zeng

where rp and rq denote the firing rates of the two neurons and η denotes
the learning rate. The feedforward connections (gray arrows in Figure 1A)
were updated in the same way. The only difference is that q indexes an in-
put pixel and rq denotes its value. We implemented the leaning algorithm in
the minibatch mode, and 〈·〉 denotes the average over a minibatch of stim-
uli presented to the model. To prevent the weights from increasing without
bound, after every update of the weights according to equation 2.5, a divi-
sive normalization method was used (see section 4). Similar rules to equa-
tion 2.5 have been used to learn RFs of V1 neurons (Brito & Gerstner, 2016)
in the LCN (Rozell et al., 2008).

In a biological system, connected neurons can become disconnected
when the synapses are weak. To simulate the process, one could use a small
threshold to prune all connections whose strengths are below it (Miner &
Triesch, 2016). But that would only prune the E-to-E connections because
the other three types of lateral connections should be much stronger ac-
cording to physiological data (Hofer et al., 2011; Holmgren et al., 2003) and
therefore would not be affected. A better strategy is to define a probability
function depending on the connection strength w for randomly dropping
connections. Three nonincreasing probability functions p(w) were tested,
called one-over-w, sigmoid and piecewise-linear (see Figure 1D) The pa-
rameters of the functions were set such that after convergence of the learn-
ing algorithm, the probability of connection between excitatory neurons
was about 20% and the probability of connection from excitatory neurons to
inhibitory neurons was about 90% according to experimental observations
in layer 2/3 of rodents’ V1 area (Cossell et al., 2015; Hofer et al., 2011; Ko
et al., 2011; Yoshimura et al., 2005). We empirically found that to satisfy the
above conditions, p(w) should first decrease quickly to a low probability
then stay there or decrease slowly. We did not find qualitatively different
results by using different functions or different parameters of a particular
function if only the above conditions were satisfied. All results presented
in this letter were obtained with p(w) being the one-over-w function unless
otherwise specified. Without connection dropping, the results presented
in this letter, except those depending on disconnections between neu-
rons (e.g., connection probability and network topology), did not change
significantly.

The model and the learning algorithm used in the study are quite con-
ventional and it is very likely that other excitatory-inhibitory models (King
et al., 2013; Miner & Triesch, 2016) equipped with similar learning al-
gorithms could lead to similar results. The aim of this study is not to
propose a novel model or learning algorithm, but to investigate the wiring
properties of these kinds of models and further verify their validity as V1
models.

2.2 Overall Firing and Connection Patterns. The distributions of fir-
ing rates of the excitatory neurons and inhibitory neurons showed a higher
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Functional and Wiring Properties of V1 Neurons 111

peak at zero and a heavier “tail” than the fitted half-normal distributions
(see Figure 1E), indicating sparseness of the neural activities. This was due
to the threshold activation functions of the neurons. Consistent with the
sparse coding theory (Olshausen & Field, 1996, 1997), the RFs of the exci-
tatory neurons resembled simple oriented bars, but the RFs of inhibitory
neurons were much more complex (see Figure 1F). Using gratings with dif-
ferent orientations (0◦–180◦) as the input, we calculated the preferred ori-
entations and the orientation selectivity indexes (OSIs) of all neurons (see
Figures 1G and 1H): 84.7% of excitatory neurons had an OSI larger than 0.8,
but 85.6% of inhibitory neurons had an OSI less than 0.4, consistent with
physiological data (Atallah et al., 2012; Hofer et al., 2011; Kerlin et al., 2010).
We attribute these differences to different levels of sparseness in the activ-
ity of the excitatory neurons and inhibitory neurons. Given a set of stimuli,
the percentage of active excitatory neurons was approximately 5%, while
the percentage of active inhibitory neurons was approximately 35%. When
inhibitory neurons were made to fire more sparsely, which was achieved
by increasing their firing thresholds, many of their RFs also resembled ori-
ented bars (see Figure 1I). This is consistent with a previous computational
study (King et al., 2013) in which both excitatory neurons and inhibitory
neurons fired sparsely to image patches and the obtained RFs all resembled
oriented bars.

The connection probabilities for E-to-E, E-to-I, I-to-E and I-to-I connec-
tions were 14.3%, 88.2%, 88.5% and 97.6%, respectively (see Figure 1J).
The strength of E-to-E connections was significantly lower than those of
the other three types of connections (median of E-to-E, 9.8 × 10−5; me-
dian of E-to-I, 2.9 × 10−3; median of I-to-E, 2.7 × 10−3; median of I-to-I,
2.8 × 10−3; P = 1.6 × 10−18, 3.0 × 10−19 and 1.8 × 10−23, respectively, rank
sum test with 100 random samples in each set; see Figure 1K). The con-
clusion about the comparison of connection strength between excitatory-
excitatory pairs and excitatory-inhibitory pairs was consistent with the data
obtained in V1 layer 2/3 of rats (Holmgren et al., 2003) and mice (Hofer
et al., 2011). The strengths of the E-to-I, I-to-E and I-to-I connections were
not significantly different (P > 0.33, rank sum test with 100 random sam-
ples in each set; see Figure 1K).

It has been reported that the connection strength between pyramid
neurons in different regions in the brain follows lognormal distribution
(Ikegaya et al., 2013; Lefort, Tomm, Sarria, & Petersen, 2009; Song et al.,
2005). We found that the strengths of all four types of lateral connections in
our model followed approximate lognormal distributions (see Figure 2A),
although the distributions of the strengths of E-to-I and I-to-E connections
were fitted with exponential functions a little bit better. Since the connec-
tion dropping operation may influence the distributions, we also plot the
results obtained with the other two probability functions in Figure 2. The
same conclusions were obtained when the sigmoid function was used (see
Figure 2B). When the piecewise linear function was used, the log-normal
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112 X. Hu and Z. Zeng

Figure 2: Distributions of the strengths of E-to-E, E-to-I, I-to-E and I-to-I con-
nections with the probability function of dropping connections as one-over-w
function (A), sigmoid function (B) and piecewise linear function (C), respec-
tively. In each panel, the circles denote the probability distribution of the con-
nection strength. The continuous curve and the dashed curve are the log-normal
fitting and exponential fitting of the circles, respectively. The legend shows the
mean squared errors of the two fitting results.
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Functional and Wiring Properties of V1 Neurons 113

fitting was always better than the exponential fitting for all four types of
connections (see Figure 2C).

2.3 Neurons with Similar Responses Form Strong Connections. Be-
cause the learning rule was based on the Hebb rule, we expected that the
strengths of connections between neurons would correlate with their re-
sponses to natural images. We therefore calculated the correlation coeffi-
cients of responses of pairs of neurons to 100 randomly sampled image
patches (see Figures 3A–3C). The distribution of the coefficients between
excitatory neurons was quite sparse, and most coefficients were small (see
Figure 3A). Similar results were also produced in a previous computational
model (Zylberberg et al., 2011). Excitatory neurons were more likely to be
connected if their responses were more similar (see Figure 3D). In addi-
tion, they tended to form strong connections if their response correlation
coefficient was large but tended weak connections if the coefficient was
small or negative (see Figure 3E). In fact, 3.7% of the most correlated E-
to-E pairs accounted for 50% of the total strength of all E-to-E connections
(see Figure 3F), highlighting the nonuniform distribution of the connection
strengths between excitatory neurons. These results are consistent with ex-
perimental data obtained from the mouse V1 (Cossell et al., 2015).

The distributions of the correlation coefficients between excitatory-
inhibitory pairs (see Figure 3B) and between inhibitory pairs (see Figure 3C)
were peaked at points below zero, wider than that between excitatory pairs
(see Figure 3A). The connection probability between excitatory-inhibitory
pairs was higher if their responses were positively correlated and lower
if their responses were negatively correlated (see Figures 3G and 3J). The
I-to-I connection probability was always close to one and had weak de-
pendence on the response correlation (see Figure 3M). Similar to the E-to-E
connections, the I-to-E, E-to-I and I-to-I connections were stronger between
neurons with more similar responses (Figures 3E, 3H, 3K, and 3N). The
nonuniformity of the strength distributions was not as high as that of the
E-to-E connection strength distribution. The 36.6% most correlated I-to-E
pairs (see Figure 3I), 36.0% most correlated E-to-I pairs (see Figure 3L) and
33.2% of most correlated I-to-I pairs (see Figure 3O) accounted for 50% of
the total strength of all I-to-E, E-to-I and I-to-I connections, respectively.

Taken together, these results indicated that the model neurons, regard-
less of type, were more strongly connected if their responses were more
similar.

2.4 Neurons with Similar RFs Form Strong Connections. Besides re-
sponse correlation, RF correlation, quantified using the pixel-to-pixel cor-
relation coefficient between two RFs, can be also used to measure the
functional similarity between neurons (see Figure 4). The distributions of
RF correlation coefficients were more symmetric than those of response
correlation coefficients (compare Figures 4A–4C with Figures 3A–3C). This
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Functional and Wiring Properties of V1 Neurons 115

difference was observed between the two distributions calculated between
PYR neurons in mouse V1 (Cossell et al., 2015). We investigated whether
the connection probability and the strength of connections between neu-
rons correlated with the similarity between the RFs of the neurons (see Fig-
ures 4D–4O). All the conclusions based on the response similarity were also
obtained based on the RF similarity. In fact, 1.7% of strong E-to-E connec-
tions accounted for 50% of the total strength (see Figure 4F), while consid-
erably larger portions of strong connections of other types (I-to-E, 24.4%;
E-to-I, 24.3%; I-to-I, 29.2%) were required to account for 50% of the total
strength (see Figures 4I, 4L, and 4O).

Consistent with the results obtained between PYR/PYR pairs in the
mouse V1 (Cossell et al., 2015), we found that the connections between bidi-
rectionally connected excitatory neuron pairs were stronger than the con-
nections between unidirectionally connected excitatory pairs, and the RFs
of bidirectionally connected neuron pairs were more similar than the RFs
of unidirectionally connected pairs (see Figure 5).

We also investigated the relationships between the RFs of postsynaptic
neurons and the RFs of presynaptic neurons using the method described in
a published physiological study (Cossell et al., 2015). For each postsynaptic
neuron, we calculated the weighted sum of the RFs of all presynaptic exci-
tatory or inhibitory neurons using the corresponding connection strengths
as the weighting coefficients and then compared this sum with the actual
RF of the postsynaptic neuron. The RFs of the excitatory neurons were well
predicted by their presynaptic excitatory neurons (see Figure 6A) but not

Figure 3: Connection strength reflects the similarity of neural responses.
(A–C) The distributions of the response correlation coefficient between
all excitatory-excitatory pairs, excitatory-inhibitory pairs, and inhibitory-
inhibitory pairs, respectively. The inset shows the response correlation coeffi-
cients between 20 example neurons. (D) The connection probability between ex-
citatory pairs plotted against the pairwise response correlation coefficient. The
curve shows the logistic regression result y = L/(1 + exp(−αx − β )), where L, α,
and β are fitting parameters. The p-value corresponds to the slope parameter α.
(E) The mean connection strength between excitatory pairs plotted against the
pairwise response correlation coefficient. Shaded region, 99% confidence level.
Dashed line, mean connection strength between all pairs of excitatory neurons.
(F) The cumulative distribution of connection strength between excitatory pairs
with respect to response correlation (black curve), and the cumulative distribu-
tion of response correlation coefficients (blue curve). Dashed lines illustrate how
the percentage of pairs accounting for 50% of the total connection strength is de-
termined. (G–I) As for panels D to F except that the results of I-to-E connections
are presented. (J–L) As for panels D to F except that the results of E-to-I connec-
tions are presented. (M–O) As for panels D to F except that the results of I-to-I
connections are presented. Best viewed in color.
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116 X. Hu and Z. Zeng

Figure 4: Connection strength reflects the similarity of RFs. All of the details
are as described for Figure 3, except that the RF correlation coefficients rather
than the response correlation coefficients are shown on the horizontal axes. Best
viewed in color.
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Functional and Wiring Properties of V1 Neurons 117

Figure 5: Comparison of connections between unidirectionally connected ex-
citatory neuron pairs and between bidirectionally connected excitatory pairs.
(A) Distribution of the strengths of connections between unidirectionally con-
nected pairs (black) and bidirectionally connected pairs (red) in 600 randomly
selected excitatory neuron pairs. (B) Distribution of the RF correlation coeffi-
cients between unidirectionally connected neurons (black), bidirectionally con-
nected neurons (red), and unconnected neurons (green) in the same set of 600
excitatory neuron pairs. Magenta lines denote the medians of the populations.
Uni: unidirectional. Bi: bidirectional. Unc: unconnected. ∗∗P < 10−4, ranksum
test. Best viewed in color.

by the presynaptic inhibitory neurons (see Figure 6B). The RFs of the in-
hibitory neurons were predicted by their presynaptic excitatory neurons
to some extent (see Figure 6C) and well predicted by their presynaptic in-
hibitory neurons (see Figure 6D).

For each neuron, we sorted the presynaptic neurons into descending or-
der of connection strength and then divided them into four quarters. In the
case of E-to-E connections, the first two quarters of presynaptic neurons ac-
counted for 81.2% and 14.0% of the total connection strength on average,
and the predicted RFs of the postsynaptic neurons based on these neurons
were highly correlated with the actual RF (median correlations were 0.94
and 0.78, respectively; see Figure 6A). These findings are consistent with
the results obtained between PYR/PYR pairs in the mouse V1 (Cossell et al.,
2015). In the cases of E-to-I and I-to-I connections, only the first quarter of
presynaptic neurons could predict the RFs of postsynaptic neurons to some
extent (median correlations were 0.64 and 0.83, respectively; see Figures 6C
and 6D). In the case of I-to-E connections, none of the quarters of presy-
naptic neurons could predict the RFs of postsynaptic neurons well (median
correlations were smaller than 0.5; see Figure 6B). In all four cases, the me-
dian correlations decreased with increasing quarter number. Finally, as ex-
pected, the unconnected neurons in all four cases failed to predict the RFs
of the postsynaptic neurons.
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Figure 6: Prediction of neuron RFs using presynaptic neuron RFs. (A, B) Pre-
diction of excitatory neurons’ RFs using presynaptic excitatory neurons’ RFs
and presynaptic inhibitory neurons’ RFs, respectively. (C, D) Prediction of in-
hibitory neurons’ RFs using presynaptic excitatory neurons’ RFs and presynap-
tic inhibitory neurons’ RFs, respectively. The left portion of each panel shows
five examples of the postsynaptic neurons’ RFs (the first column) and the syn-
thesized RFs by weighted sums of the RFs of all presynaptic neurons (the second
column), the first to the fourth quarter of presynaptic neurons (the third to sixth
columns), and unconnected neurons (the last column). The weighting coeffi-
cients for presynaptic neurons were the corresponding connection strengths.
The weighting coefficients for unconnected neurons were all set to 1. Each
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Functional and Wiring Properties of V1 Neurons 119

These analyses indicate that all neurons in the model with more similar
RFs were more strongly connected, and the presynaptic neurons played an
important role in shaping the RFs of the postsynaptic neurons.

2.5 Excitatory Neurons Form a Small-World Network. The previous
analyses suggested that the learned network was not randomly wired. We
therefore systematically evaluated the nonrandomness of the network. We
investigated only the subnetwork consisting of the excitatory neurons, be-
cause we aimed to analyze the connectivity pattern, which was meaningful
only in a population with sparse connections while the inhibitory neurons
were densely connected to each other and to the excitatory neurons. We
randomly selected 10,000 small subnets consisting of K excitatory neurons,
with K equal to 3 to 8, and then calculated the number of connections
between all neurons in each subnet. For comparison, we constructed
100 random networks whose unidirectional and bidirectional connection
probabilities matched those of the learned network. A higher number
of connections in a K-cell subnet tended to be found more frequently in
the learned network than in random networks (see Figures 7A and 7B),
implying that certain local connection patterns (or motifs) (Perin et al., 2011;
Song et al., 2005) were significantly overrepresented. The neurons with
more similar RFs tended to form overrepresented motifs (see Figure 7C).
Moreover, pairs of neurons tended to share more common neighbors than
expected, and with more common neighbors, neurons were more likely to
be connected (see Figure 8). Similar motif patterns and common neighbor
effect were observed among somatosensory neurons of rats (Perin et al.,
2011).

Many types of networks can exhibit the local clustering effect described
above. Next, we tested two most common hypotheses in describing nonran-
dom complex networks: the scale-free network (Barabasi & Albert, 1999)
and small-world network (Watts & Strogatz, 1998) hypotheses. These are
global characteristics of complex networks. The hallmark of the scale-free
network is that its node degree follows a power-law distribution. In other
words, the distribution of the node degree is approximately a straight line
with a negative slope in the log-log plane; so is its cumulative distribution

20 × 20 image patch was normalized independently by dividing its maximum
absolute value for display. The presynaptic and postsynaptic neurons are indi-
cated on the top. The right portion of each panel shows the median correlation
coefficients between the RFs of the postsynaptic neurons and the RFs synthe-
sized by different groups of presynaptic neurons, as well as unconnected neu-
rons. The size of the dot is proportional to the percentage of the sum of the
connection strengths from the group of presynaptic neurons over the sum of
the connection strengths from all presynaptic neurons and is indicated by the
blue numbers. Best viewed in color.
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Figure 7: Motifs in the excitatory neural network. (A) The differences in the
numbers of connections between observed and expected values divided by the
expected value. The observed value was calculated in the learned network, and
the expected value was the mean value calculated in 100 random networks.
(B) The distributions of the number of connections in the learned network (red)
and random networks (black) over 10,000 randomly selected K-cell subnets. Er-
ror bars are SEM. (C) Mean pairwise correlation of RFs of neurons in a subnet
against the number of connections in the subnet. The results were averaged over
10,000 K-cell subnets. Error bars are standard deviations. Best viewed in color.
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Figure 8: The common neighbor effect. Left: Distribution of the number of
common neighbors for 10,000 pairs of neurons found in 10,000 N-cell subnets.
Right: Connection probability of a pair as a function of the number of com-
mon neighbors. Red: Learned network. Black: Mean and SEM over 100 ran-
dom networks with matched pairwise connection probability. (A) Results for
N = 12. This represents a simulation of a physiological study (Perin et al., 2011)
in which approximately 6 to 12 neurons in rat cortical slices were simultane-
ously recorded. (B) Results for N = 100. Best viewed in color.

(but with a different slope). We did not observe this pattern in the distri-
bution of node in-degree, out-degree, or total degree (see Figure 9). To test
the small-world hypothesis, we converted the excitatory neuronal network
into an undirected and unweighted network: if there existed at least one
connection between two neurons, they were said to be connected, and the
connection weight was set to one. The average shortest path length between
all pairs of excitatory neurons was 1.81 ± 0.39 (mean ± standard devia-
tion), and the average clustering coefficient was 0.36 ± 0.7. For comparison,
we constructed a random network with the same number of neurons and
connections. This was achieved by randomly shuffling the connections in
the undirected and unweighted excitatory neuronal network. The average
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Figure 9: Cumulative probability of the node in-degree (red), out-degree (blue),
and total degree (pink) of the learned excitatory neuronal network. Best viewed
in color.

shortest path length in this random network was 1.81 ± 0.39, nearly the
same as that of the learned network, but the average clustering coefficient
was 0.18 ± 0.003, which is much smaller than that of the learned network,
indicating the small-worldness of the learned network.

Akey question is how this small-world network is wired. It is known that
a small-world network can be obtained by randomly reconnecting some
connections in a ring lattice (Watts & Strogatz, 1998). In many small-world
networks, such as social networks and the World Wide Web, it is difficult to
visualize this process because it is difficult to arrange the nodes into a ring
lattice. In our network, the neurons can be ordered in a ring lattice accord-
ing to their orientation preferences. We generated an example subnetwork
consisting of 36 neurons whose preferred orientations increased from 0◦ to
180◦ (see Figure 10A). The subnetwork exhibited a clustering pattern on
neighboring neurons as most of the output weights and input weights of
each neuron were between neighboring neurons, though some distant con-
nections were also present. We used a threshold to remove the half of the
original weighted connections with the weakest weights and converted the
connections to binary; we also observed a prominent clustering effect (see
Figure 10B).

2.6 Modulatory Effects. One critical condition that makes the model
stable is the balance between excitatory input and inhibitory input to each
neuron. It is reasonable to infer that the tuning properties of excitatory neu-
rons can be influenced by the activity level of inhibitory neurons, and vice
versa. To investigate this effect, we first manipulated the firing rates of the
inhibitory neurons by shifting their firing threshold λI (see Figure 1B) from
1 to −3, −1, 3, or 5, while keeping the firing threshold of the excitatory neu-
rons unchanged. This operation emulates the optogenetic manipulation of
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Figure 10: Visualization of the connection pattern of a 36-cell subnet. The neu-
rons labeled N1 to N36 are presented according to their preferred orientations
in 36 bins at 5◦ intervals across the range 0◦–180◦. (A) The original directed and
weighted network. Every ribbon represents a directed connection from one neu-
ron to another neuron. The thickness indicates the weight value. (B) The con-
verted undirected and unweighted network. The half of connections with the
weakest strengths were removed before binarization. Each ribbon represents a
connection between two neurons. The same set of neurons was selected. Best
viewed in color.

the activities of PV interneurons in the visual cortex (Atallah et al., 2012;
Lee et al., 2012). We randomly selected 90 excitatory neurons whose tun-
ing curves were well fitted with the gaussian curves for analysis. When
the inhibitory neurons were activated (λI < 1), the average firing rate of
the excitatory neurons decreased (see Figure 11A). Conversely, when the
inhibitory neurons were suppressed (λI > 1), the average firing rate of the
excitatory neurons increased (see Figure 11A). By aligning and normalizing
the orientation tuning responses in all conditions, we found that a larger
λI resulted in higher firing rates of the excitatory neurons (see Figure 11B,
circles). Nevertheless, the preferred orientation and OSI of the excitatory
neurons showed little change across modulated conditions (see Figures 11C
and 11D). Across all modulated conditions, decreasing the firing rates of the
excitatory neurons led to orientation sharpening as indicated by a decrease
in the half-width at half height (HWHH) measure (see Figure 11E; Pearson’s
linear correlation coefficient: 0.87, P < 10−50). Orientation sharpening was
also observed in mouse V1 neurons when PV neurons were activated by
injecting virus (Lee et al., 2012).
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Figure 11: Modulatory effects on firing rates. (A–F) Impact of changing all in-
hibitory neurons’ firing threshold λI on the firing rates of 90 selected excitatory
neurons while λE was fixed at 5. (A) Histogram of percentage change in firing
rate, defined as (r − r̃)/r̃, where r̃ denotes the response of an excitatory neuron
at its preferred orientation in the control condition and r denotes the response of
the neuron at the same orientation in the modulated condition. (B) Aligned re-
sponses of the excitatory neurons against the orientation of gratings in different
conditions. The responses of every neuron were shifted to peak at 90◦ and nor-
malized such that the maximal response in the control condition was 100%. The
circles denote the average responses of the neurons at 12 equidistant points,
and error bars are SEM. The black curve represents the fitted gaussian func-
tion to the average responses in the control condition. The other curves were
obtained by linearly transforming the black curve using the linear fitting pa-
rameters obtained in panel F while constraining the curves above zero. (C) His-
togram of change in the preferred orientation. (D) Histogram of change in the
OSI. (E) Change in the HWHH of the fitted gaussian function to the tuning curve
against percentage change in firing rate. The black line is the linear regression
of all circles. (F) Modulated responses of the excitatory neurons against control
responses after firing rate normalization. The curves represent the threshold lin-
ear regression functions. (G, H) Impact of changing all excitatory neurons’ fir-
ing threshold λE on the firing rates of the highly orientation-selective inhibitory
neurons while λI was fixed at 2. Similar to panels B and F, respectively, but here
the responses of the inhibitory neurons are shown. Best viewed in color.
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We next asked what the relationship is between the firing rates of exci-
tatory neurons in the control condition and the modulated conditions. To
address this question, we plotted the average modulated response against
the average control response of the excitatory neurons in all orientations
and found a linear relationship between them (see Figure 11F). Because
the firing rate cannot be negative, we fitted a threshold linear function
y = max(ax + b, 0) in every case. The optimal parameters (a, b) were (0.82,
−10.00), (0.91, −4.80), (1.13, 1.72), and (1.24, 3.86) when λI was −3, −1, 3 and
5, respectively. We then used the optimal parameters to predict the mod-
ulated orientation tuning curves based on the gaussian curve fitted in the
control condition. The predictions well matched the measured data (see Fig-
ure 11B). Similar firing rate changes in PYR neurons in layer 2/3 of V1 were
reported in a previous study that modulated the activities of PV neurons
(Atallah et al., 2012; Atallah, Scanziani, & Carandini, 2014).

Finally, we manipulated the firing rates of excitatory neurons by shift-
ing their firing threshold λE while keeping the firing threshold of inhibitory
neurons unchanged. We analyzed the responses of highly orientationselec-
tive inhibitory neurons and found that when the excitatory neurons were
activated (λE = 0), the firing rates of the inhibitory neurons increased; when
the excitatory neurons were suppressed (λE = 10), the firing rates of the
inhibitory neurons decreased (see Figure 11G). The firing rates of the in-
hibitory neurons in the modulated conditions can also be well predicted
by a threshold linear function y = max(ax + b, 0) based on their firing rates
in the control condition (see Figures 11G and 11H). The optimal parame-
ters (a, b) were (1.13, 3.62) and (0.89, −0.35) in the λE = 0 and 10 conditions,
respectively.

Taken together, these results suggested that based on our model, modu-
lating the activities of one type of neurons (excitatory or inhibitory) had
predictable effects on the orientation tuning curves of the other type of
neurons.

3 Discussion

We present an excitatory–inhibitory neural model endowed with a sim-
ple Hebb learning rule starting from a limited number of biologically rea-
sonable assumptions. It replicated a wide variety of published results on
the wiring properties of V1 neurons. Previous computational studies (Ol-
shausen & Field, 1996, 1997) have suggested the critical role of the sparse
coding principle in developing oriented bar-like RFs of V1 neurons, while
our study suggests that this principle may underlie a huge number of
wiring properties of the local circuitry of V1.

Two previous computational studies (King et al., 2013; Zylberberg et al.,
2011) have already related the RFs of V1 neurons to some wiring proper-
ties of these neurons. Zylberberg et al. (2011) constructed a sparse coding
model and reported that the strength of connection between neurons was
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correlated with the RF similarity between neurons and followed a log
normal-like distribution. But the connections are inhibitory connections be-
tween excitatory neurons, which violates Dale’s law. Inhibitory neurons
were introduced to resolve this problem (King et al., 2013). It was reported
that the strength of connection between an excitatory-inhibitory neuron
pair was correlated with the RF similarity between the two neurons. The
same prediction was made in our study. However, in that model, excita-
tory neurons were not directly connected; therefore, the model cannot be
used to study the wiring scheme of excitatory neurons about which there
were abundant experimental data in recent decades. We extended these two
studies by constructing an excitatory-inhibitory model with all four types
of lateral connections (E-to-E, E-to-I, I-to-E, and I-to-I) and systematically
analyzed the functional properties (including activities and RFs) of neu-
rons and their wiring properties (including connection probabilities and
strengths) and the relations between these properties. In addition, we ana-
lyzed local and global characteristics of the subnetwork consisting of exci-
tatory neurons. We also analyzed modulatory effect by changing the firing
rates of excitatory and inhibitory neurons.

Not all results presented in this letter have been verified in animals, and
those results can be regarded as predictions for the local circuits in layer 2/3
of the rodent V1 area. The first set of predictions concerns the connection
pattern between PYR/PYR pairs in layer 2/3 of the V1 area. One prediction
is the existence of overrepresented network motifs in the network consist-
ing exclusively of PYR neurons, and such motifs consist of neurons with
similar RFs (see Figure 7). Previous studies revealed overrepresented net-
work motifs in different sensory areas (Perin et al., 2011; Song et al., 2005)
but did not investigate the properties (e.g., the RFs) of neurons in these mo-
tifs. Computational models have been proposed to unravel the underlying
mechanism for the emergence of network motifs (Brunel, 2016; Druckmann
& Chklovskii, 2012; Miner & Triesch, 2016; Montangie et al., 2020). How-
ever, these models take noise as input or do not take sensory input at all;
therefore, they cannot relate the motifs related to the RFs of neurons in V1
either. Another prediction, which is closely related to the previous one, is
that the PYR neuronal network in layer 2/3 of the rodent V1 area is a small-
world network. Functional and anatomical studies have identified many
small-world networks in the brain, including the network of all neurons
of Caenorhabditis elegans (Watts & Strogatz, 1998), the medial reticular for-
mation of the vertebrate brain (Humphries, Gurney, & Prescott, 2005), and
a subnetwork of layer 5 PYR neurons in rat somatosensory cortex (Perin
et al., 2011). But whether the layer 2/3 PYR neuronal network in V1 has this
property and how this topology is related to the functional properties of
neurons have not been studied yet.

A widely accepted assumption about the formation of small-world
architecture is that this architecture minimizes the wiring cost (Bassett &
Bullmore, 2006). However, it is difficult to conceptualize creating a model
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specifically designed to result in small-worldness. Our findings demon-
strate that this is not necessary. We have shown that the small-worldness
emerged from a model based on more basic principles. If layer 2/3 PYR
neurons in actual brain tissue are verified to form a small-world network,
our model will establish a close link between the functional efficiency and
structural efficiency of the V1 circuit.

The second set of predictions concerns the properties of connections
between excitatory-inhibitory pairs and inhibitory-inhibitory pairs, which
have not been assessed in animals to date. First, both the I-to-E and
E-to-I connection probabilities increase with the similarity between the neu-
rons’ RFs (see Figures 4G and 4J), but the connection probability between
inhibitory pairs has only weak dependence on the similarity between the
neurons’ responses (see Figure 3M) or RFs (see Figure 4M). Second, the
I-to-E and E-to-I connection strengths increase with the similarity between
the neurons’ RFs (see Figures 4H and 4K). This was also predicted in a pre-
vious computational study (King et al., 2013). Third, the I-to-I connection
strength increases with the similarity between the neurons’ responses (see
Figure 3N) and RFs (see Figure 4N). Fourth, the RF of an inhibitory neu-
ron can somehow be predicted by its presynaptic excitatory and inhibitory
neurons that are strongly connected to it (see Figures 6C and 6D). If these
predictions are verified, our model would provide a more complete picture
of the local circuits in layer 2/3 of V1.

The third set of predictions concerns the modulatory effects. One pre-
diction is that if both excitatory neurons and inhibitory neurons in V1 are
suppressed such that the inhibitory neurons’ firing is sufficiently sparse,
then after a long period of exposure to natural scenes, the RFs of many in-
hibitory neurons will also be oriented bars (see Figure 1I). This is also pre-
dicted in another study (King et al., 2013). An extension of the prediction
is that certain subtypes of inhibitory neurons with sparser activities tend to
have higher OSI than other subtypes of inhibitory neurons. Another pre-
diction is closely related to a previous study (Atallah et al., 2012), which
demonstrated that increasing (or decreasing) the firing rates of the PV neu-
rons linearly decreased (or increased) the firing rates of the excitatory neu-
rons. Besides reproducing these results, we predicted that if the activities of
the excitatory neurons can be modulated, increasing (or decreasing) their
firing rates will linearly increase (or decrease) the firing rates of PV neu-
rons (see Figures 11G and 11H). These predictions suggest that excitatory
neurons and inhibitory neurons in the visual cortex play complementary
roles in encoding the visual stimuli.

Our model is an extension of a previous model LCN (Rozell et al., 2008)
and the learning algorithm is based on the conventional Hebb rule, similar
to what is described in a previous study (Brito & Gerstner, 2016). The aim
of our study is not to propose novel models or learning algorithms, but to
unify a number of functional and wiring properties of the V1 circuits in a
single model, then make testable predictions.
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We believe that some spiking models (Carlson et al., 2013; King et al.,
2013; Miner & Triesch, 2016; Montangie et al., 2020) starting from the same
set of assumptions as made in the this study could yield similar results
as presented in this letter by taking natural images as input and setting
all connections plastic and learnable. The reasons are as follows. First, by
distinguishing excitatory and inhibitory neurons, spiking models can have
sparse neural activities. This is mainly due to the balanced excitatory and
inhibitory input to each neuron. Another factor contributing to the sparse
activities of neurons in our model is the threshold firing property of neu-
rons (see Figure 1B) because the neurons could not fire when the inputs did
not exceed the thresholds. This is an inherent property of spiking models
of neurons if the firing rate of a neuron is plotted against the input current
(Dayan & Abbott, 2001). Second, the learning algorithms used in previous
spiking models (Carlson et al., 2013; King et al., 2013; Miner & Triesch, 2016;
Montangie et al., 2020) all follow the same spirit of the Hebb rule (neurons
fire together, wire together) including Oja’s rule, correlation measuring rule
and spike-timing-dependent plasticity rule.

By using a firingrate model instead of a spiking model we aim to shed
some light on the development of new artificial neural networks (ANN)
considering that the mainstream ANNs are firing-rate models. The widely
used multilayer perceptrons and convolutional neural networks in the ar-
tificial intelligence (AI) field originate from neuroscience, but they have
little in common with the visual system of animals in terms of wiring pat-
terns revealed in recent decades. A promising future direction is therefore
to extend our proposed model to a new ANN by using deep learning tech-
niques (LeCun, Bengio, & Hinton, 2015) and test its performance in AI
tasks.

4 Materials and Methods

The source code can be found at http://xlhu.cn/codes/EInet.zip.

4.1 Stimuli. We downloaded 10 512 × 512 pixel grayscale images, used
in a previous computational study (Olshausen & Field, 1996, 1997), that de-
scribe natural scenes (e.g., rocks, trees, and mountains).1 The images were
whitened such that the amplitudes of low-frequency and high-frequency
components in the frequency domain were approximately the same (Ol-
shausen & Field, 1997). The data set was augmented by rotating images 90
degrees. The stimuli consisted of 12,000 patches of 20 × 20 pixels extracted
from the 20 images at random positions. The L2 norm of every patch was
normalized to 800.

1
The images can be found at http://xlhu.cn/codes/IMAGES.zip.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/1/104/1977867/neco_a_01453.pdf by R
am

ona M
archand on 06 January 2022

http://xlhu.cn/codes/EInet.zip
http://xlhu.cn/codes/IMAGES.zip


Functional and Wiring Properties of V1 Neurons 129

4.2 Model. We used the Matlab function ode45 to solve equations 2.1
and 2.2), which is based on an explicit Runge–Kutta (4,5) formula (Dormand
& Prince, 1980). The external input c to every neuron for every presentation
of stimuli was 2 Hz. Time constants were τE = 100 ms and τI = 50 ms. Dif-
ferent values did not affect learning results so long as the simulation time
was long enough to allow the solution to converge to steady state. In our
experiments, the simulation time was 1000 ms (see Figure 1C).

In accordance with physiological studies (Cossell et al., 2015; Hofer et al.,
2011; Ko et al., 2011; Yoshimura et al., 2005), in our model network, the con-
nection probability between a set of neurons was defined as the number
of existing connections divided by the number of potential connections be-
tween the neurons. Since a pair of neurons can have reciprocal connections,
the number of potential connections between N neurons is N(N − 1). If a
neuron pair has reciprocal connections, they are said to be bidirectionally
connected. If a neuron pair has one and only one connection, they are said to
be unidirectionally connected. The bidirectional (or unidirectional) connec-
tion probability between a set of neurons was defined as the number of ex-
isting bidirectionally (or unidirectionally) connected neuron pairs divided
by the maximum number of potential bidirectionally (or unidirectionally)
connected pairs. The maximum numbers of potential bidirectionally and
unidirectionally connected pairs between N neurons are both N(N − 1)/2.

4.3 Responses of Neurons. The “response” or “firing rate” of an excita-
tory neuron and an inhibitory neuron to a stimulus (a natural image patch
or an oriented grating) was defined as rE(T ) and rI(T ), respectively, where
T denotes the end of the simulation time.

4.4 Learning Algorithm. To prevent the weights from increasing with-
out bound, after every update of the weights (called “one iteration”) ac-
cording to equation 2.5, a simple normalization method was used. For
lateral connections, the incoming connection strengths to each excitatory
neuron (i.e., from all excitatory neurons and inhibitory neurons) was nor-
malized to 1. Similar homeostatic plasticity mechanisms have been widely
used in computational models to suppress runaway synaptic dynamics
(Klos, Miner, & Triesch, 2018; Lazar, Pipa, & Triesch, 2009). Because rI > rE,
the Hebb rule would make the elements in MEI larger than those in MEE.
Animal studies (Holmgren et al., 2003) indicated that the bidirectional con-
nections between excitatory-inhibitory neuron pairs in layer 2/3 of rodent
visual cortex had similar strengths. Therefore, we normalized MIE by divid-
ing a number such that its mean was equal to the mean of MEI. The mean of
MII was also set equal to the mean of MEI (Pfeffer et al., 2013), but this is not
essential, as we found that setting its mean to twice or half of the mean of
MIE produced qualitatively similar results to those reported in this letter so
long as the threshold λI was adjusted such that the response sparseness of
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excitatory and inhibitory neurons remained similar. These operations made
the sum of the incoming connection strengths to each inhibitory neuron ap-
proximately the same during learning. Considering that W E and W I con-
tained both positive and negative values, we normalized the L2-norm of
each row to be constant such that these weights had magnitudes similar to
the E-to-I and I-to-E lateral connection weights.

In our experiments, the minibatch size was 100. The learning rate η was
4 × 10−4 initially, 2 × 10−4 after 30 iterations, and 1 × 10−4 after 70 iterations.
The learning stopped after all extracted image patches were input to the
model once (120 iterations). The learning algorithm always converged be-
fore the last iteration.

We tried three probability functions for randomly dropping connections
during learning. The first one is the one-over-w function,

p(w) = c1 + 1 − c1

b1(w − a1) + 1
, (4.1)

where a1, b1, c1 > 0. The second function is the sigmoid function,

p(w) = 2 − c2 − 2 − 2c2

1 + exp(−b2(w − a2))
, (4.2)

where a2, b2, c2 > 0. In equations 4.1 and 4.2, the parameters ai(i = 1, 2) are
thresholds at which p(w) = 1. If w > ai, then p(w) < 1. If w < ai, then p(w) >

1 indicating that all such connections should be dropped. The parameters
bi(i = 1, 2) control the slope of the two monotonically decreasing functions.
The parameters ci(i = 1, 2) denote the dropping probabilities when w → ∞.
The third function is the piecewise-linear function,

p(w) =

⎧⎪⎨
⎪⎩

1, x < a3

1 − 1−c3
b3−a3

(w − a3), a3 ≤ x ≤ b3

c3, x > b3

, (4.3)

where a3, b3, c3 > 0. The parameters a3 and b3 are two thresholds for the
strength w, between which the function decreases linearly. The parameter
c3 denotes the background dropping probability.

The parameters in equations 4.1 to 4.3 were set such that after con-
vergence of the learning algorithm, the connection probability between
excitatory neurons was about 20% and the connection probability from
excitatory to inhibitory neurons was about 90%. If only these conditions
were satisfied, different sets of parameters yielded qualitatively similar re-
sults. All results presented in this letter were obtained with a1 = 10−6, b1 =
3 × 104, and c1 = 0.01 in equation 4.1; a2 = 10−5, b2 = 3 × 104, and c2 = 0.03
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in equation 4.2; and a3 = 10−6, b3 = 10−4, and c3 = 0.05 in equation 4.3. We
present only the results with the one-over-w function unless otherwise
stated (see Figures 1D and 2).

We trained five different models from random initial points but did not
observe significant differences in functional or structural properties. We
present the results of a randomly selected model in the letter.

4.5 Orientation Tuning. To obtain the orientation tuning functions of
the neurons, we exposed the model to gratings of size 20 × 20 pixels with
different orientations and spatial phases. The gratings were parameterized
as follows:

A sin
(

2π f
x
20

cos
(
α − π

2

)
+ 2π f

y
20

sin
(
α − π

2

)
+ 2πφ

)
,

where A denotes amplitude, α denotes the orientation of the grating, (x, y)
denotes the pixel location in the range of [1,20], f denotes the spatial fre-
quency (cycles per image patch), and φ denotes the spatial phase. In our
experiments, A = 1 and f = 2. Like natural image patches, every grating
was normalized such that its L2 norm was 800. For each orientation α in the
range 0 − π , the grating shifted in the image patch by increasing φ from
0 to 1 in steps of 0.05. The “response” of a neuron to a grating with an
orientation α was defined as the maximum response of the neuron over
all φ.

The preferred orientation of a neuron was defined as the orientation of
the grating that made the neuron fire most strongly. The OSI of a neuron
has different definitions in the literature. In our study, the OSI of a neuron
was defined as (Kerlin et al., 2010)

((∑
r(θi) sin(2θi)

)2
+

(∑
r(θi) cos(2θi)

)2
) 1

2/∑
r(θi),

where θi denotes the orientation of the grating and r(θi) denotes the fir-
ing rate of the neuron. Quantitatively similar results to Figures 1H and 11
were obtained when the following definition of OSI (Hofer et al., 2011) was
used OSI =(rprefer − rorth)/(rprefer + rorth), where rprefer and rorth denote the
responses of the neuron at the preferred orientation and the orientation or-
thogonal to the preferred orientation, respectively. The major difference is
that with the latter definition, neurons usually had larger OSIs.

The tuning curves of excitatory neurons to the orientation of grat-
ings were fitted with gaussian functions. The tuning sharpness was mea-
sured as (2 ln(2))0.5σ , that is, the half-width at halfheight (HWHH) (Atallah
et al., 2012), where σ denotes the standard deviation of the fitted gaussian
function.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/1/104/1977867/neco_a_01453.pdf by R
am

ona M
archand on 06 January 2022



132 X. Hu and Z. Zeng

4.6 Nonlinear Fitting of the Distribution of Connection Strength.
We first calculated the probability distributions of the strengths of the four
types of lateral connections in the log space (circles in Figure 2). They were
calculated as the number of strengths belonging to bins with equal size �

in the log space, divided by the sum of bin areas,
∑

i hi�, where hi denotes
the height of the ith bin. Let f (x) denote a probability distribution function
(PDF) in the linear space. We considered two typical PDFs. The first one is
the log-normal PDF,

f (x) = 1

xσ
√

2π
exp

(
− (ln x − μ)2

2σ 2

)
,

with parameters μ and σ . The second one is the exponential PDF,

f (x) = 1
μ

exp
(

− x
μ

)
,

with parameter μ. To fit data in the log space, we defined a new variable,
y = ln x, and denoted its PDF by g(y), which satisfies g(y)dy = f (x)dx. Then
g(y) = x f (x). We used Matlab function nlinfit to fit the function g(y) to the
data points represented by circles in each panel of Figure 2 from multiple
initial points and selected the best fitted function.

4.7 Local Connection Patterns in the Excitatory Neuronal Network.
We generated 100 random networks whose bidirectional and unidirectional
connection probabilities matched those of the learned excitatory neuronal
network. From each network, we randomly selected 10,000 K-cell subnets
and counted the number of connections in every K-cell subnet. Because the
connections are directed, the possible number of connections in a K-cell sub-
net ranges between zero and K(K − 1). The numbers obtained in the learned
network are called the observed values, and the numbers obtained in the ran-
dom networks are called the expected values (see Figure 7).

Two neurons were said to be neighbors if a connection existed between
them, regardless of its direction. We randomly selected an N-cell subnet
from a network and recorded the number of common neighbors of two ran-
dom neurons in the subnet. This process was repeated 10,000 times, yielding
10,000 numbers, for every network (i.e., the learned network or a random
network with matched unidirectional and bidirectional probabilities). The
distribution of the numbers is plotted in Figure 8, left. The connection prob-
ability of two neurons as a function of the number of common neighbors is
plotted in Figure 8, right.

4.8 Characterization of the Small-Worldness. Two quantities are usu-
ally used to characterize a small-world network: the average shortest path
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length over all pairs of nodes and the average clustering coefficient over
all nodes (Watts & Strogatz, 1998). The shortest path length between two
nodes is the minimum number of connections traveling from one node to
the other. The clustering coefficient of a node is defined as the number of
connections that actually exist between all its neighbors, divided by the
maximum number of connections that can exist between all its neighbors.
We only calculated the two quantities in the undirected and unweighted
networks formed by excitatory neurons.

4.9 Visualization of the Connection Pattern among Excitatory Neu-
rons. The connections among K excitatory neurons (see Figure 10) were vi-
sualized using the free software Circos (Krzywinski et al., 2009), available at
http://mkweb.bcgsc.ca/tableviewer/visualize/. A K × K connection ma-
trix was created in which the element at location (i, j) was the connection
weight from the ith neuron to the jth neuron. The neurons were sorted ac-
cording to their preferred orientations in both columns and rows. In the
case of undirected and unweighted networks, the nonzero elements in the
matrix were set to 1; only the upper diagonal matrix was shown because
Circos treats every network as a directed graph, and there is no need to
show the connections in the lower diagonal matrix, which are symmetric to
the connections in the upper diagonal matrix.

4.10 Manipulation of Neural Activities. We first manipulated the fir-
ing rates of inhibitory neurons by shifting their firing threshold λI from 1 to
−3, −1, 3, or 5 while keeping the firing threshold of excitatory neurons un-
changed. We randomly selected 100 excitatory neurons and removed those
whose maximum firing rate across gratings with all orientations were <1.0
or whose orientation tuning curves were not well fitted with gaussian func-
tions (R2 < 0.8) under the control condition (λI = 1). This resulted in 90 ex-
citatory neurons for comparison of orientation tuning properties before and
after changing λI. The results in Figures 11A to 11F were obtained in this
manner.

We next manipulated the firing rates of excitatory neurons by shifting
their firing threshold λE from 5 to 0 or 10 while keeping the firing threshold
of inhibitory neurons unchanged. Because the orientation tuning curves of
most inhibitory neurons were not gaussian-like, it is inappropriate to use
the gaussian function fitting quality as a criterion for selecting neurons. For
every modulated condition, we selected all 250 inhibitory neurons and re-
moved those for which the maximum firing rate across gratings with all
orientations was <1.0 and OSI <0.4 in both the control (λE = 5) and mod-
ulated conditions (λE = 0 or 10). This yielded 28 and 35 inhibitory neurons
for studying the modulatory effect with λE = 0 and λE = 10, respectively.
The results in Figures 11G and 11H were obtained in this way.
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