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Extended linear-quadratic programming (ELQP) is an extension of the conventional linear programming

and quadratic programming, which arises in many dynamic and stochastic optimization problems.

Existing neural network approaches are limited to solve ELQP problems with bound constraints only. In

the paper, I consider solving the ELQP problems with general polyhedral sets by using recurrent neural

is investigated for this purpose. In addition, based on different types of constraints, different approaches

are utilized to lower the dimensions of the designed GPNNs and consequently reduce their structural

complexities. All designed GPNNs are stable in the Lyapunov sense and globally convergent to the

solutions of the ELQP problems under mild conditions. Numerical simulations are provided to validate

the results.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The notion of extended linear-quadratic programming (ELQP)
was introduced by Rockafellar and Wets in the 1980s in setting up
various large-scale models in dynamic and stochastic program-
ming and multistage optimization [20,19]. A general ELQP
problem takes the form

min
x2X

f ðxÞ ¼ pTxþ 1
2xTPxþ rXQ ð�q� DTxÞ, (1)

where

rXQ ðwÞ ¼ max
y2Y
fwTy� 1

2yTQyg,

x 2 Rn, p 2 Rn, y 2 Rm, q 2 Rm, D 2 Rn�m, P ¼ PT
2 Rn�n,

Q ¼ QT
2 Rm�m, and X � Rn, Y � Rm are nonempty convex sets.

The matrices P and Q are both positive semi-definite. The ELQP
problem includes many classical problems as special cases. For
example, by setting different parameters in (1) to zeros, one easily
obtains the usual linear programming problems or quadratic
programming problems. ELQP also includes the extended linear
programming (ELP) as a special case, which itself has many
applications in practice [2]. ELQP differs from the usual linear
ll rights reserved.
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programming, quadratic programming in that its objective
function is only piecewise linear-quadratic in general [20].

To solve the ELQP problems, many numerical algorithms have
been proposed (e.g., see [7,18–21]). Neural network approaches for
solving ELQP problems have also been investigated and good
results have been obtained, e.g. [23,5,4]. The primary aim of
developing neural networks for solving this type of problems, as
well as for solving other optimization related problems (see
[24–28,10–14,3,8,6,17,16] and references therein), is not to invent
numerical algorithms and then compete with existing ones on
conventional computers, though sometimes such an algorithm
can be obtained as a byproduct (e.g. [14]). Instead, it is to develop
some devices that can imitate our brains to do complex
computing in noisy and uncertain circumstances, which would
be definitely useful in the evolving artificial intelligence commu-
nity. Such devices, we call artificial brains, could be analog circuits.
For specific computing, these analog circuits will be much faster
than numerical algorithms that have to be implemented on
conventional digital equipments [9,22].

To the best of the author’s knowledge, the earliest attempt for
designing neural networks for solving ELQP problems (1) refers to
[23] by Tao and Fang, where the constraint sets X and Y in (1) are
assumed to be of box type. Actually, if this assumption holds, it is
shown in [5] that the condition of the saddle point of the problem
can be formulated as the following linear variational inequality
(LVI): to find a vector x� 2 O such that

ðMx� þ aÞTðx� x�ÞX0; 8x 2 O, (2)
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where M is a matrix, a is a vector, and O is a box set. In view
of this fact, the neural network models for solving LVIs such
as in [8,25,11] can all be applied to solve (1). In particular,
the projection neural network (PNN) for solving LVIs pro-
posed in [25] is studied in [5] for solving ELQPs. Another
model is presented in [4] with improved convergence
property.

However, the neural networks presented in [23,5,4] deal with
ELQP problems with box type X and Y only, thus have great
limitations in practice. It is possible to formulate the ELQP
problem with general polyhedral constraint sets into LVI in the
form of (2) (e.g., using similar techniques to what will be
presented in the paper), then the neural networks in [23,5,4]
can be used to solve the problem. However, the dimensions of the
resulting neural networks will be very high. In this paper, I
consider to solve the ELQP problem with general polyhedral X and
Y, which are defined by a set of inequality and equality constraints,
for instance,

X ¼ fx 2 Rn
jx 2 Ox;Ax 2 Os;Cx ¼ cg,

Y ¼ fy 2 Rm
jy 2 Oy;By 2 Ow; Ey ¼ eg, (3)

where A 2 Rh1�n, B 2 Rh2�n, C 2 Rr1�m, E 2 Rr2�m, c 2 Rr1 , e 2 Rr2 ,
and Ox � Rn, Oy � Rm, Os � Rh1 , Ow � Rh2 are box sets. For
convenience, in (3), x 2 Ox, y 2 Oy are termed bound constraints,
Ax 2 Os, By 2 Ow are termed inequality constraints, and Cx ¼ c,
Ey ¼ e are termed equality constraints. Throughout the paper it is
assumed that neither X nor Y is empty.

The idea of my approach is as follows. First, by utilizing some
techniques in the optimization context, I formulate the optimality
conditions of the ELQP problems into the so-called generalized
linear variational inequalities (GLVIs): to find a vector x� such that
Nx� þ b 2 O and

ðMx� þ aÞTðx� Nx� � bÞX0; 8x 2 O, (4)

where M, N are matrices, a, b are vectors and O is a closed convex
set. Then, the general projection neural network (GPNN) pre-
sented in [3,26] is applied to solve the GLVIs, and consequently,
the original ELQP problems.

The network complexity is an important issue in studying
neural networks. Based on different types of constraints,
I will devote myself to design lower dimensional neural networks
for solving ELQP problems with different combinations of
constraints.
2. ELQP problems with bound constraints and inequality
constraints

Let us first consider the ELQP problem with inequality
constraints and bound constraints only, that is,

X ¼ fx 2 Rn
jx 2 Ox;Ax 2 Osg,

Y ¼ fy 2 Rm
jy 2 Oy;By 2 Owg, (5)

where the notations are the same as in (3). Note that the
equality constraints in (3) can be rewritten as inequality
constraints, so the neural network that will be designed in this
section is applicable to the ELQP problem with X, Y defined in (3),
too; see Remark 3 for a discussion in the end of this section.
Denote the box sets Os ¼ fs 2 Rh1 j spspsg;Ow ¼ fw 2 Rh2 j

wpwpwg. The following theorem establishes a necessary and
sufficient optimality condition for problem (1) with X and Y

defined by (5).

Theorem 1. Let x� 2 Ox and y� 2 Oy. Then ðx�; y�Þ is a solution to

problem (1) with X and Y defined by (5) if and only if there exists
s� 2 Rh1 , w� 2 Rh2 such that Ax� 2 Os, By� 2 Ow, and

ðPx� � Dy� � ATs� þ pÞTðx� x�ÞX0; 8x 2 Ox;

ðDTx� þ Qy� � BTw� þ qÞTðy� y�ÞX0; 8y 2 Oy;

ðs�ÞTðs� Ax�ÞX0; 8s 2 Os;

ðw�ÞTðw� By�ÞX0; 8w 2 Ow:

8>>>><
>>>>:

(6)

Proof. In view of the fact that the general constraints in problem
(1) can be expressed as

Ax� a ¼ 0; By� b ¼ 0; a 2 Os; b 2 Ow,

define the Lagrangian function to problem (1) on Ox � Oy � Os �

Ow �Rh1 �Rh2 as follows:

Lðx; y; a; b; s;wÞ ¼ gðx; yÞ þ sTða� AxÞ �wTðb� ByÞ,

where

gðx; yÞ ¼ 1
2xTPx� 1

2yTQy� xTDyþ pTx� qTy.

According to the well-known saddle point theorem [1], ðx�; y�Þ is a
solution to (1) if and only if there exists a� 2 Os, b

�
2 Ow, s� 2 Rh1 ,

w� 2 Rh2 such that

Lðx�; y; a�;b; s;w�ÞpLðx�; y�; a�; b�; s�;w�Þ

pLðx; y�; a; b�; s�;wÞ,

8x 2 Ox; y 2 Oy; a 2 Os,

b 2 Ow; s 2 Rh1 ; w 2 Rh2 . (7)

The left inequality in (7) implies

1
2yTQyþ qTyþ ðx�ÞTDy� sTða� � Ax�Þ þ ðw�ÞTðb� ByÞ

X
1
2ðy
�Þ

TQy� þ qTy� þ ðx�ÞTDy� � ðs�ÞTða� � Ax�Þ

þ ðw�ÞTðb� � By�Þ; 8y 2 Oy; b 2 Ow; s 2 Rh1 .

Define a function

fðy; b; sÞ91
2yTQyþ qTyþ ðx�ÞTDy

� sTða� � Ax�Þ þ ðw�ÞTðb� ByÞ,

which is obviously convex in y, linear in s and b. Note

fðy�; b�; s�Þ ¼minfðy; b; sÞ; 8y 2 Oy; b 2 Ow; s 2 Rh1 ,

which is equivalent to the following equations [15]:

ðQy� þ qþ DTx� � BTw�ÞTðy� y�ÞX0; 8y 2 Oy;

ðw�ÞTðb� b�ÞX0; 8b 2 Ow;

a� � Ax� ¼ 0:

8><
>: (8)

The right inequality in (7) implies

1
2ðx
�Þ

TPx� þ pTx� � ðx�ÞTDy� þ ðs�ÞTða� � Ax�Þ � ðw�ÞTðb� � By�Þ

p1
2xTPxþ pTx� xTDy� þ ðs�ÞTða� AxÞ �wTðb� � By�Þ,

8x 2 Ox; a 2 Os; w 2 Rh2 .

Define a function

cðx; a;wÞ91
2xTPxþ pTx� xTDy�

þ ðs�ÞTða� AxÞ �wTðb� � By�Þ,

which is obviously convex in x, linear in a and w. Note

cðx�; a�;w�Þ ¼ mincðx; a;wÞ; 8x 2 Ox; a 2 Os; w 2 Rh2 ,

which is equivalent to [15]

ðPx� þ p� Dy� � ATs�ÞTðx� x�ÞX0; 8x 2 Ox;

ðs�ÞTða� a�ÞX0; 8a 2 Os;

b� � By� ¼ 0:

8><
>: (9)

By combining (8) and (9), and replacing a and b with notations s

and w, respectively, we obtain the equivalent formulation of (7) as
(6), which completes the proof. &
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Note that (6) can be put into the following compact form:

ðM1u� þ a1Þ
T
ðu� N1u�ÞX0; 8u 2 U1, (10)

where u ¼ ðxT; yT; sT;wTÞ
T and

M1 ¼

P �D �AT 0

DT Q 0 �BT

0 0 I 0

0 0 0 I

0
BBBBB@

1
CCCCCA; a1 ¼

p

q

0

0

0
BBBBB@

1
CCCCCA,

N1 ¼

I 0 0 0

0 I 0 0

A 0 0 0

0 B 0 0

0
BBBBB@

1
CCCCCA; U1 ¼ Ox � Oy � Os � Ow,

with I being the identity matrix of suitable dimension. Then
solving the ELQP problem (1) is equivalent to solving this GLVI
problem. Therefore the following neural network can be used to
solve the problem [3,26]:
�
 state equation:

du

dt
¼ lðN1 þM1Þ

T
ðPU1
ððN1 �M1Þu� a1Þ � N1uÞ; (11a)
�
 output equation:

v ¼ H1u, (11b)

where l40, H1 ¼ ðI;0Þ 2 RðnþmÞ�ðnþmþh1þh2Þ and POð�Þ is a projec-
tion operator which projects a point onto a closed convex set O. If
O is defined as fx 2 Rn

jx
i
pxipxi; i ¼ 1; . . . ;ng, then POðxÞ ¼

ðPOðx1Þ; . . . ; POðxnÞÞ
T with

POðxiÞ ¼

x
i
; xiox

i
;

xi; x
i
pxipxi;

xi; xi4xi:

8>><
>>:

This neural network is termed GPNN in [26] in order to emphasize
that it is actually an extension of the PNN presented in [25,11].

Theorem 2. Consider solving the ELQP problem (1) with X, Y defined

in (5) by the GPNN (11). The state of the neural network is stable in

the sense of Lyapunov and globally convergent to an equilibrium

point, and the output is globally convergent to a solution of the

problem.

Proof. Consider the equivalent formulation (10) of the ELQP
problem. Simple calculation yields

MT
1N1 ¼

P D 0 0

�DT Q 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA,

which is skew-symmetric and positive semi-definite as both P and
Q are positive semi-definite. Then the theorem follows directly
from Corollary 4 in [26]. &

Remark 1. Certainly, the GPNN (11) can be modified to solve the
ELQP problem with box constraints only. It can be done by simply
deleting the terms A, B, s, w, Os, Ow in the model. The resulting
neural network is

d

dt

x

y

 !
¼ l

I þ P �D

DT I þ Q

 !T

�

POx ðx� ðPx� Dyþ pÞÞ � x

POy ðy� ðQyþ DTxþ qÞÞ � y

0
@

1
A, (12)

which turns out to be the model proposed in [23].

Remark 2. Also, the GPNN (11) can be applied to solve the ELQP
problem with inequality constraints only. But such a neural
network would be somewhat complicated which leaves spaces for
improving. See Section 3.

Remark 3. Note that the equality constraints Cx ¼ c, Ey ¼ e can be
written as cpCxpc, epEype. That is, the equality constraints can
be unified into inequality constraints. Therefore, if equality
constraints are present, one can also adopt the neural network
(11) to solve the problem, e.g., the ELQP problem with X and Y

defined exactly as in (3). However, in Section 4 another GPNN
model will be presented which handles the equality constraints in
a more efficient way.

3. ELQP with inequality constraints only

Now consider the ELQP problem with inequality constraints
only, i.e.,

X ¼ fx 2 Rn
jAx 2 Osg,

Y ¼ fy 2 Rm
jBy 2 Owg. (13)

For solving the problem, a variant of the GPNN (11) can be used
with Ox, Oy replaced by Rn;Rm, respectively, which is of nþmþ

h1 þ h2 dimensions. In the following I show that under some
stronger conditions the problem can be solved by using a lower
dimensional GPNN.

Firstly it is observed that the optimality conditions in (6)
become

Px� � Dy� � ATs� þ p ¼ 0;

DTx� þ Qy� � BTw� þ q ¼ 0;

ðs�ÞTðs� Ax�ÞX0; 8s 2 Os;

ðw�ÞTðw� By�ÞX0; 8w 2 Ow:

8>>>><
>>>>:
These equations can be rewritten as

P �D

DT Q

 !
x�

y�

 !
¼

AT 0

0 BT

 !
s�

w�

� �
�

p

q

 !

and

s�

w�

� �T s

w

� �
�

A 0

0 B

� �
x�

y�

 !" #
X0; 8s 2 Os; w 2 Ow.

If P and Q are both positive definite, it is easily seen that the
matrix P

�DT
D
Q

� �
is also positive definite and invertible. Hence we

have

x�

y�

 !
¼

P �D

DT Q

 !�1
AT 0

0 BT

 !

�
s�

w�

 !
�

P �D

DT Q

 !�1 p

q

 !
(14)

and

ðu�ÞTðu� N2u� � b2ÞX0; 8u 2 U2, (15)
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where u ¼ ðsT, wTÞ
T and

N2 ¼
A 0

0 B

 !
P �D

DT Q

 !�1
AT 0

0 BT

 !
,

b2 ¼
�A 0

0 �B

 !
P �D

DT Q

 !�1 p

q

 !
; U2 ¼ Os � Ow.

Based on this equivalent formulation of the ELQP problem
concerned in this section, the following GPNN is proposed to
solve it:
�
 state equation:

du

dt
¼ lðN2 þ IÞTðPU2

ððN2 � IÞuþ b2Þ � N2u� b2Þ; (16a)
�
 output equation:

v ¼
P �D

DT Q

 !�1
AT 0

0 BT

 !
u�

P �D

DT Q

 !�1
p

q

 !
, (16b)

where u ¼ ðsT, wTÞ
T, v ¼ ðxT, yTÞ

T and l40. Clearly, this neural
network is of h1 þ h2 dimensions. The convergence results are
summarized below.

Theorem 3. Consider solving the ELQP problem (1) with X, Y

defined in (13) by the GPNN (16). Suppose that both P and Q

are positive definite, then the state of the neural network is stable

in the sense of Lyapunov and globally convergent to an equi-

librium point, and the output is globally convergent to a solution

of the problem. If furthermore rankðAÞ ¼ h1 and rankðBÞ ¼ h2,
then both the state and output are globally exponentially

convergent.

Proof. The theorem follows from Corollary 4 in [26] and the
following facts: (i) if P and Q are positive definite, then N2 is
positive semi-definite; (ii) if furthermore rankðAÞ ¼ h1 and
rankðBÞ ¼ h2 then N2 is positive definite. &
4. ELQP with inequality constraints and equality constraints

Consider the ELQP problems with both inequality and equality
constraints, but without bound constraints, i.e.,

X ¼ fx 2 Rn
jAx 2 Os;Cx ¼ cg,

Y ¼ fy 2 Rm
jBy 2 Ow; Ey ¼ eg. (17)

As stated in Remark 3, if we view the equality constraints
as inequality constraints, a variant of GPNN (11), which would
be of nþmþ h1 þ h2 þ r1 þ r2 dimensions, can be used to
solve the problem. Moreover, because the bound constraints
x 2 Ox, y 2 Oy are absent in the problem, a variant of GPNN (16),
which is of h1 þ h2 þ r1 þ r2 dimensions, can be also used
to solve the problem. In what follows an even lower
dimensional GPNN will be designed to solve this particular
problem.

First of all, by using the well-known saddle point theorem (just
as we do in Theorem 1), it is not difficult to obtain the following
results.

Theorem 4. Let x� 2 Ox and y� 2 Oy. Then ðx�; y�Þ is a solution

to problem (1) with X and Y defined by (17) if and only if there

exists s� 2 Rh1 , w� 2 Rh2 , r� 2 Rr1 , Z� 2 Rr2 such that Ax� 2 Os,
By� 2 Ow, and

Px� � Dy� � ATs� � CTr� þ p ¼ 0;

DTx� þ Qy� � BTw� � ETZ� þ q ¼ 0;

Cx� ¼ c;

Ey� ¼ e;

ðs�ÞTðs� Ax�ÞX0; 8s 2 Os;

ðw�ÞTðw� By�ÞX0; 8w 2 Ow:

8>>>>>>>>><
>>>>>>>>>:

(18)

Suppose that both P and Q are positive definite, rankðCÞ ¼ r1 and
rankðEÞ ¼ r2. Let

G ¼
P �D

DT Q

 !�1

; Â ¼
A 0

0 B

 !
; Ĉ ¼

C 0

0 E

 !
,

p̂ ¼
p

q

 !
; ĉ ¼

c

e

 !
; y ¼

x

y

 !
; u ¼

s

w

 !
,

x ¼
r

Z

 !

and U3 ¼ Os � Ow. Then (6) can be written as

G�1y� � ÂTu� � ĈTx� þ p̂ ¼ 0;

Ĉy� ¼ ĉ;

ðu�ÞTðu� Ây�ÞX0; 8u 2 U3:

8>><
>>: (19)

From the first equation in (19) we have

y� ¼ GÂTu� þ GĈTx� � Gp̂.

Substituting y� into the second equation in (19) yields

x� ¼ �ðĈGĈT
Þ
�1ĈGÂTu� þ ðĈGĈT

Þ
�1ĈGp̂þ ðĈGĈT

Þ
�1ĉ.

Substituting x� into the expression of y� obtained above yields

y� ¼ GÂTu� � GĈT
ðĈGĈT

Þ
�1ĈGÂTu�

þ GĈT
ðĈGĈT

Þ
�1ĈGp̂þ GĈT

ðĈGĈT
Þ
�1ĉ � Gp̂.

Substituting this y� into the third equation in (19) gives a GLVI
with respect to the variable u. Therefore, the following GPNN can
be designed to solve the ELQP problem:
�
 state equation:

du

dt
¼ lðN3 þ IÞTðPU3

ððN3 � IÞuþ b3Þ � N3u� b3Þ; (20a)
�
 output equation:

v ¼ D3uþ d3, (20b)

where l40 and

D3 ¼ GÂT
� GĈT

ðĈGĈT
Þ
�1ĈGÂT,

d3 ¼ GĈT
ðĈGĈT

Þ
�1
ðĈGp̂þ ĉÞ � Gp̂,

N3 ¼ ÂD3 ¼ ÂWÂT; W ¼ G� GĈT
ðĈGĈT

Þ
�1ĈG,

b3 ¼ ÂGĈT
ðĈGĈT

Þ
�1
ðĈGp̂þ ĉÞ � ÂGp̂.

Clearly, this GPNN is of h1 þ h2 dimensions. The following results
can be easily obtained.

Theorem 5. Consider solving the ELQP problem (1) with X and Y

defined in (17) by using the GPNN (20). If rankðCÞ ¼ r1, rankðEÞ ¼ r2,
W ¼ G� GĈT

ðĈGĈT
Þ
�1ĈG is positive semi-definite, then the state of

the neural network is stable in the sense of Lyapunov and globally

convergent to an equilibrium point, and the output is globally

convergent to a solution of the problem.
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A critical condition in above theorem is how to ensure
the positive semi-definiteness of W. See the following lemma
from [14].

Lemma 1. Let HT
¼ H 2 Rn�n, P 2 Rm�n. If RankðPÞ ¼ m and H is

positive definite, then the matrix H � HPT
ðPHPT

Þ
�1PH is positive

semi-definite.

The above lemma implies that if rankðCÞ ¼ r1, rankðEÞ ¼ r2,
D ¼ 0, and P;Q are positive definite, then the conditions in
Theorem 5 are met. But we are actually not very much interested
in the case D ¼ 0. This condition is imposed to ensure the
symmetry of G and in turn the positive semi-definiteness of W via
Lemma 1. However, as pointed out in Remark 4 of [14], when H is
asymmetric while other conditions in Lemma 1 are valid, the
conclusion of the lemma may still hold according to a variety of
numerical tests. Nevertheless, to the best of the author’s knowl-
edge, this is still a hypothesis as a rigorous proof for that is
unavailable. If this hypothesis holds, then the conditions in
Theorem 5 can be reduced to: rankðCÞ ¼ r1, rankðEÞ ¼ r2, and
P;Q are positive definite. A simulation example in Section 6 shows
that the GPNN (20) correctly converges to a solution of the
problem when Da0.
−3

−2

−1

0

1

2

3

4

5

O
ut

pu
t

y3 (t)

x3 (t)y4 (t)

xi (t), yj (t), i = 1, 2; j = 1, 2
5. Extended linear programming

Consider a special case of ELQP problem, the ELP problem [2],
which is obtained by setting p ¼ q ¼ P ¼ Q ¼ 0, D ¼ �I;m ¼ n in
(1), i.e.,

min
x

max
y

yTx

� �
subject to x 2 X; y 2 Y , (21)

where X and Y are nonempty polyhedral sets. The ELP problem
represents a class of linear programming problems in which the
decision vector (denoted by y in (21)) varies in a set. Such a
situation may be encountered in many real world applications
where the standard linear programming are employed. However,
many effective methods for solving linear programming problems
such as Simplex method and Karmarkar’s method cannot be used
to solve the ELP problems.

In [24], Xia studied the ELP problem (21) with

X ¼ fx 2 Rn
jAx 2 Osg; Y ¼ Oy,

where the notations are defined as same as in (3), and proposed a
recurrent neural network for solving it. In [7], He studied the ELP
problem (21) with

X ¼ fx 2 Rn
jx 2 Ox;Ax 2 Osg; Y ¼ Oy,

where the notations are defined as same as in (3), and formulated
it into an GLVI problem in the form of (4). Based on this
formulation, a GPNN was presented in [3] to solve the problem. In
these studies [24,7,3], the decision vector y in the ELP problem is
allowed to vary within a box set. If the GPNN designed in Section 2
is adopted, then both the variable x and the decision vector y are
allowed to vary within general polyhedral sets. This property can
be regarded as a significant advantage of the designed GPNN over
existing neural networks for solving ELP problems. The stability
and convergence results of the corresponding GPNN can be stated
similarly as in Theorem 2. Interested readers may refer to [12] for
details as well as other related results.
0 1 2 3 4 5 6 7 8
−5

−4

Time

Fig. 1. Output trajectories of the GPNN (11) with 10 random initial points.
6. Numerical simulations

In this section I use a numerical example to illustrate the
results. The simulations are conducted in MATLAB.
Consider an ELQP problem (1) with

P ¼

5 0 �1

0 3 0

�1 0 1

0
BB@

1
CCA; D ¼

2 0 0 2

0 1 0 0

0 0 �4 0

0
BB@

1
CCA,

Q ¼

2 �3 0 �1

�3 10 0 0

0 0 2 3

�1 0 3 10

0
BBBBB@

1
CCCCCA; p ¼

4

8

�8

0
BB@

1
CCA; q ¼

5

5

�5

�5

0
BBBBB@

1
CCCCCA.

Let us first consider the case where X;Y are defined in (5). Let

A ¼

1 1 0

2 0 �1

�5 5 �1

0
BB@

1
CCA; B ¼

1 4 0 0

2 1 0 5

5 0 0 �1

0 0 5 �5

0
BBBBB@

1
CCCCCA,

Ox ¼ fx 2 R3
jxX0g;

Oy ¼ fy 2 R4
jyX0g;

Os ¼ fs 2 R3
j � 10psp10g;

Ow ¼ fw 2 R4
j � 5pwp5g:

The GPNN (11) is used to solve the problem. Since both P and Q are
positive definite, according to Theorem 2, the neural network
should be globally convergent to its equilibrium points. The
numerical simulations validate this prediction. Actually, all
simulations with different initial points in R14 converge to a
solution of the ELQP problem ððx�ÞT; ðy�ÞTÞT ¼ ð�0:0000;
�0:0000;1:5296;�0:0000;�0:0000;1:6177;0:6177ÞT. Fig. 1 dis-
plays the output trajectories of the neural network with 10
different initial points when l ¼ 1.

Next we eliminate the bound constraints in the above problem.
Then the constraint sets X and Y are defined by inequality
constraints only; see (13). The GPNN (16) is used to solve the
problem. All simulations converge to the equilibrium point
u� ¼ ð�0:0000;0:0000;0:1026;0:0000;�0:0000;0:4962;�0:8713ÞT.
Fig. 2 displays the state trajectories of the neural network with 10
different initial points when l ¼ 1. The corresponding solution of
the ELQP problem is calculated as ððx�ÞT; ðy�ÞTÞT ¼ ð�0:8596;
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Fig. 2. State trajectories of the GPNN (16) with 10 random initial points.
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Fig. 3. State trajectories of the GPNN (20) with 10 random initial points.
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�2:6632;0:9817;�0:8972;�0:5028;1:5140;0:5140ÞT. Moreover,
when the GPNN (11) is used to solve the problem, same solution
is obtained.

Finally, we set X and Y as in (17) where A, B, Os, Ow remain the
same as above and

C ¼ ð1;5;�6Þ; c ¼ 2; E ¼ ð�2;0;8;3Þ; e ¼ �7.

It can be readily checked that all conditions in Theorem 5
are valid. Then GPNN (20) can be used to solve the problem.
All simulations converge to the equilibrium point u� ¼

ð�0:0001;0:0002;0:0001;0:0000;�0:0002;0:1561;1:0753ÞT. Fig. 3
displays the state trajectories of the neural network with 10
different initial points when l ¼ 1. The corresponding solution of
the ELQP problem is calculated as ððx�ÞT; ðy�ÞTÞT ¼ ð�0:9008;
0:3060;�0:2285;�1:0189;�0:8363;�1:0943;�0:0943ÞT. More-
over, when the GPNN (11) is used to solve the problem, same
solution is obtained.
7. Concluding remarks

In this paper I consider solving the extended linear-quadratic
programming (ELQP) problem with general linear constraints
by using the general projection neural network (GPNN), an
existing recurrent neural network model in the literature. I
have shown that with different combinations of bound con-
straints, equality constraints and inequality constraints, the
ELQP problem can be always transformed into the so-called
generalized linear variational inequality with box type constraints
only. Thus the GPNN can be adopted for solving the corres-
ponding problem. Moreover, in order to reduce the network
complexity, much effort has been devoted to reduce their
dimensions based on specific types of constraints. All of these
designed GPNNs are globally convergent to the solutions of the
corresponding ELQP problems under mild conditions. Finally, a
numerical example was discussed to illustrate the performances
of the designed GPNNs.
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