
Another Simple Recurrent Neural Network for

Quadratic and Linear Programming

Xiaolin Hu and Bo Zhang

State Key Laboratory of Intelligent Technology and Systems,
Tsinghua National Laboratory for Information Science and Technology (TNList),

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

Abstract. A new recurrent neural network is proposed for solving
quadratic and linear programming problems, which is derived from two
salient existing neural networks. One of the predecessors has lower struc-
tural complexity but were not shown to be capable of solving degener-
ate QP problems including LP problems while the other does not have
this limitation but has higer structural complexity. The proposed model
inherits the merits of both models and thus serves as a competitive al-
ternative for solving QP and LP problems. Numerical simulations are
provided to demonstrate the performance of the model and validate the
theoretical results.

Keywords: Recurrent neural network, Optimization, Linear program-
ming, Quadratic programming, Stability analysis.

1 Introduction

Consider solving the following convex quadratic programming (QP) problem

minimize
1
2
xTQx+ pTx

subject to Ax = b, Cx ≤ d, x ∈ X
(1)

where x = (x1, . . . , xn)T ∈ �n is the unknown variable, Q ∈ �n×n, p ∈ �n, A ∈
�r×n, b ∈ �r, C ∈ �m×n, d ∈ �m are constants, and X is a nonempty box set
defined asX = {x ∈ �n|li ≤ x ≤ hi, i = 1, . . . , n} (note that some li’s can be −∞
and some hi’s can be +∞). In addition, Q is symmetric and positive semidefinite.
In particular, if Q = 0, the problem degenerates to a linear programming (LP)
problem.

During the past two decades, many recurrent neural networks have been pro-
posed for solving optimization-related problems because of their analog circuits
implementability and intrinsic parallelism which are advantageous for fast com-
puting. In particular, for solving the QP problem (1), there exist many salient
models but their real-time computational abilities are often constrained by var-
ious deficiencies such as demand for slack variables (for converting inequal-
ity constraints into equality constraints) [1, 2, 3, 4, 5, 6], calculation of matrix

W. Yu, H. He, and N. Zhang (Eds.): ISNN 2009, Part III, LNCS 5553, pp. 116–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Another Simple Recurrent Neural Network 117

inverses [7, 8, 9, 10, 11], inconvenience in determining the convergence condi-
tions [10, 5, 12], and so on. Actually, these networks are suitable for specific
applications. Among those capable of solving the QP problem (1) but free of
such deficiencies, two simple models refer to

d

dt

⎛
⎝
x
y
z

⎞
⎠ = −λ

⎛
⎝
x− PX((I −Q)x− CT y +AT z − p)

y − ỹ
Ax− b

⎞
⎠ (2)

and

d

dt

⎛
⎝
x
y
z

⎞
⎠ = −λ

⎛
⎝

2(x− PX((I −Q)x− CT ỹ +AT (z −Ax + b) − p)
y − ỹ
Ax− b

⎞
⎠ (3)

where ỹ = (y + Cx − d)+ and λ > 0, which were proposed in [13] and [14],
respectively. The block diagram of the former is depicted in Fig. 1 and that of
the latter can be depicted similarly.

The major difference between the performances of (2) and (3) is that the
former can solve (1) with positive definite Q, while the latter can solve (1) with
positive semi-definite Q though its structure is slightly more complicated (a
detailed comparison is made in Section 2).

The major difference between the dynamic equations of the two neural net-
works is that the latter substitutes (y + Cx − d)+ and z − Ax + b for y and
z respectively in the first equation of the former. Clearly, such substitutions do
not affect the equilibrium set of (2) and consequently the two networks have the
same equilibrium set. This observation raises an interesting question: will other
combinations of variable substitutions also result in feasible neural networks?
Note that multiple variable substitutions are available if we let the right-hand-
sides of (2) and (3) be equal to zeros. The answer to this question is positive
and a novel model has been figured out in this way very recently [15], which
shares the same performance with (3) and the same structural complexity with
(2). In this paper we present another model, also resulted from this idea. It will
be shown to possess the merits of (2) and (3), and thus can compete with the
model in [15].

Throughout the paper, if a is a vector, then ‖a‖ =
√∑

a2
i . �n

+ denotes
the nonnegative quadrant of �n. Moreover, it is assumed that there exists at
least one finite solution to problem (1).

2 Formulation of the Model

As for problem (1), the Karush-Kuhn-Tucker (KKT) conditions can be expressed
in the following way [13, 14]: x is an optimum of (1) if and only if there exist
y ∈ �m and z ∈ �r so that

⎧⎨
⎩
x = PX((I −Q)x− CT y +AT z − p)
y = (y + Cx− d)+

Ax− b = 0
(4)



118 X. Hu and B. Zhang

where PX(·) and (·)+ are two activation functions, whose definitions can be
found in any of the references [2, 14, 13, 5, 11, 16, 15, 17]. Obviously, the identical
equilibrium set of (2) and (3) coincides with the KKT point set of problem (1).

If we substitute y in the first equation of (2) with (y + Cx − d)+, which is
available from the second equation, to constitute x̃, and then substitute x in the
third equation of (2) with x̃, we arrive at the following dynamic equations with
only the scaling factors different:

d

dt

⎛
⎝
x
y
z

⎞
⎠ = −λ

⎛
⎝

2(x− x̃)
y − ỹ

2(Ax̃− b)

⎞
⎠ (5)

where ỹ = (y + Cx − d)+, x̃ = PX((I − Q)x − CT ỹ + AT z − p) and λ > 0.
These equations represent a new network for solving problem (1). The output
can be regarded as either x or x̃ because in Section 3 it will be shown that the
state equations will always evolve to one of the equilibrium points and at any
equilibrium point x is equal to x̃. It is easy to verify the following results.

Theorem 1. A point x∗ is a solution of (1) if and only if there exist y∗ and z∗

such that ((x∗)T , (y∗)T , (z∗)T )T is an equilibrium point of (5).

Then, to verify the viability of the new model, we need to show whether its sta-
bility conditions and structural complexity are comparable with existing models
especially (2) and (3). In Section 3 it will be shown that the stability results of the
proposed model requires only the positive semidefiniteness of Q for solving (1),
the same as the neural network (3). In the rest of this section, we compare its
structural complexity with those of (2) and (3).

First, we show that the structural complexity of the proposed neural network
is the same as (2). One would argue that if the detailed expressions of ỹ and x̃
are substituted into (5), the equations in (5) will get much longer than the cor-
responding ones in (2); therefore, the structure of the network (5) is much more
complicated than that of (2). However, nobody would do that in hardware imple-
mentation. Actually, though ỹ appears three times in (5), it does not mean that
this term is needed to be implemented three times. Only one block is enough and
its output can be connected to three different spots. Likewise, though x̃ appears
twice in (5), it requires just one implementation. Based on this idea, on one hand,
if we count the numbers of multiplications and additions/substractions to be per-
formed on the right-hand-sides of (2) and (5), respectively, it will be found that
the numbers are the same for the two equations. On the other hand, if we count
the numbers of integrators (for realizing integrations), amplifiers (for realizing
activation functions PX(·) and (·)+), multipliers, summators and interconnec-
tions required by hardware implementation of the two networks, respectively,
it will be found that all of these numbers are identical for two networks. This
result is made clearer in Fig. 1. In the figure, if we change the starting posi-
tions of two connections in the neural network (2) to other two positions, and
meanwhile change two scaling factors, the figure becomes exactly the diagram
of the neural network (5). In this sense, the proposed neural network possesses
the same structural complexity as the neural network (2).



Another Simple Recurrent Neural Network 119

TA

PX(·)

(·)+

A

b

x

y

z

+

-
-

+

+

-

+

+

+

-

+

-

S1

S2

S2'

S1'

TC

Q p

-

C
d

+

Fig. 1. Block diagrams of the neural networks (2) and (5). If the two dashed lines
are connected, the figure depicts the diagram of (2). If the first dashed line (counted
top-down, the same convention is adopted in what follows) is not started from point
S1, but from point S1’, the second line is not started from point S2, but from point
S2’, while the first and third integrators use 2λ as their scaling factors, the diagram
then switches to the network (5).

Let us then examine the complexity of the neural network (3). From its dy-
namic equations, it is easy to see that no matter how the computing order of
different terms is arranged, one more operation of addition is required to incor-
porate −Ax+b to the term AT (z−Ax+b) in the top equation of (3), though the
result of Ax − b can be obtained directly from the bottom equation. This leads
to r more connections and one more summator in its architecture than in the
architectures of (2) and (5), which can be perceived in Fig. 1. When the number
of equality constraints is large relative to inequality constraints, e.g., in k-WTA
applications [8, 15], the inefficiency of the network (3) becomes prominent.

3 Stability Analysis

In this section, we will show that the proposed neural network (5) possesses
the same convergence result as the neural network (3), that is, the global conver-
gence property requires the positive semidefiniteness of Q only. In what follows,
the equilibrium set of the neural network is denoted by Ω∗. Since it is assumed
that (1) has at least one finite solution, according to Theorem 1, there exists at
least one finite point in Ω∗. The following lemma follows from [14].

Lemma 1. The function ‖ỹ‖2 is convex and continuously differentiable on�n+m.

In addition, ∇‖ỹ‖2 = 2
(
CT ỹ
ỹ

)
.



120 X. Hu and B. Zhang

Lemma 2. Consider the following function

V (u) = φ(u) − φ(u∗) − (u− u∗)T∇φ(u∗) +
1
2
‖u− u∗‖2, (6)

where u = ((x)T , (y)T , (z)T )T and u∗ = ((x∗)T , (y∗)T , (z∗)T )T ∈ Ω∗ is a finite
point and φ(u) = xTQx/2 + pTx+ ‖ỹ‖2/2. It has the following properties.

1. V (u) is convex and continuously differentiable on �n+m+r.
2. V (u) ≥ ‖u− u∗‖2/2 for all u ∈ �n+m+r.
3. ∇V (u)TF (u) ≥ 2‖x− x̃‖2 + ‖y − ỹ‖2 for all u ∈ �n+m+r, where

F (u) =

⎛
⎝

2(x− x̃)
y − ỹ

2(Ax̃− b)

⎞
⎠ .

Proof. From Lemma 1, V (u) is continuously differentiable on �n+m+r. To prove
its convexity, what we only need to show is the convexity of the function ψ(u) =
φ(u) − φ(u∗) − (u − u∗)T∇φ(u∗). In view that φ(u) is convex and ∇ψ(u) =
∇φ(u) −∇φ(u∗), it is easy to validate this fact.

2) This result follows directly from the convexity of φ(u), which ensures ψ(u)
defined above is nonnegative.

3) The gradient of V (u) is given by

∇V (u) =

⎛
⎝

(I +Q)(x− x∗) + CT ỹ − CT y∗

ỹ − 2y∗ + y
z − z∗

⎞
⎠ .

In the following projection inequality (see [18, 13, 14, 16])

(PΩ(u) − u)T (v − PΩ(u)) ≤ 0, ∀u ∈ �n, v ∈ Ω,

let Ω = X,u = x−Qx− p− CT ỹ +AT z and v = x∗, then

(x̃− x∗)T (x−Qx− p− CT ỹ +AT z − x̃) ≥ 0.

Since u∗ satisfies (4), according to the equivalence of the projection equation
and variational inequality [18] we know

(x̃− x∗)T (Qx∗ + p+ CT y∗ −AT z∗) ≥ 0.

Adding the above two equations gives

(x̃− x∗)T (x−Qx− CT ỹ +AT z − x̃+Qx∗ + CT y∗ −AT z∗) ≥ 0.

Similarly, we can derive (ỹ−y∗)T (y+Cx−d−ỹ) ≥ 0 and (ỹ−y∗)T (−Cx∗+d) ≥ 0.
Adding them gives

(ỹ − y∗)T (y + Cx− Cx∗ − ỹ) ≥ 0.



Another Simple Recurrent Neural Network 121

Given these equations, we have

∇V (u)TF (u) =2‖x− x̃‖2 + 2(x− x̃)T (x̃− x∗ +Qx−Qx∗ + CT ỹ − CT y∗)

+ ‖y − ỹ‖2 + 2(y − ỹ)T (ỹ − y∗) + 2(Ax̃− b)T (z − z∗)

=2‖x− x̃‖2 + ‖y − ỹ‖2 − 2(x̃− x∗)T (x̃− x∗ +Qx−Qx∗ + CT ỹ

− CT y∗) + 2(x− x∗)T (x̃− x∗) + 2(x− x∗)T (Qx−Qx∗)

+ 2(x− x∗)T (CT ỹ − CT y∗) + 2(ỹ − y∗)T (y − ỹ)

+ 2(x̃− x∗)T (AT z −AT z∗)

=2‖x− x̃‖2 + ‖y − ỹ‖2 + 2(x̃− x∗)T (x− x̃−Qx+Qx∗ − CT ỹ

+ CT y∗ +AT z −AT z∗) + 2(x− x∗)T (Qx−Qx∗)

+ 2(ỹ − y∗)T (Cx − Cx∗ + y − ỹ)

≥2‖x− x̃‖2 + ‖y − ỹ‖2 + 2(x− x∗)TQ(x− x∗).

Since Q is positive semidefinite, the conclusion holds.

Lemma 3. For any initial point u(t0) = (x(t0)T , y(t0)T , z(t0)T )T ∈ X ×�m+r,
the neural network (5) has a unique continuous solution x(t) for all t ≥ t0 and
x(t) stays in X forever.

Proof. Taking Lemma 2 into account, the results can be reasoned following sim-
ilar arguments for proving Theorem 2 in [14], which are omitted here for brevity.

Theorem 2. For any u(t0) ∈ X × �m+r the neural network (5) is stable in
the sense of Lyapunov and its trajectory u(t) converges to a point in Ω∗. In
particular, if there is only one point in Ω∗, the neural network is asymptotically
stable.

Proof. According to Lemma 3, for any initial point u(t0) ∈ X×�m+r, the neural
network has a unique continuous trajectory u(t) for all t ≥ t0. In addition u(t) is
bounded for all t ≥ t0. According to Lemma 3, x(t) ∈ X for all t ≥ t0. Consider
the function defined in (6). It follows from Lemma 2 that

dV (u(t))
dt

= −λ∇V (u)TF (u) ≤ −2λ‖x− x̃‖2 − λ‖y − ỹ‖2 ∀t ≥ t0.

Hence, the neural network is stable in the sense of Lyapunov. Clearly, if du/dt =
0, then dV/dt = 0. According to the LaSalle invariance principle, u(t) converges
to the largest invariant set M in {u ∈ �n+m+r|dV (u)/dt = 0}. In what follows
we show M = Ω∗. Clearly, any point in Ω∗ also belongs to M. Consider any
point u ∈ M. Since dV/dt = 0, then x = x̃ and y = ỹ from the above equation,
which implies dx/dt = −2λ(x − x̃) = 0. It follows that x is in the steady state
(a constant), so is x̃. Denote Ax̃ − b by c where c is a constant. If c 
= 0, then
dz/dt = −2λc and z → ∞ when t → +∞, which contradicts the boundedness
of u(t). Consequently, c = 0 and dz/dt = 0. It follows that u ∈ Ω∗, and hence
M = Ω∗.



122 X. Hu and B. Zhang

Since u(t) is bounded over [t0,+∞), there exists a convergent subsequence
t0 < · · · < tn < tn+1 < · · · such that limk→+∞ u(tk) = û,whereû ∈ Ω∗. Define
another Lyapunov function V̂ (u) the same as V (u) in (6) except that u∗ in V (u)
is replaced by û. It is easy to see that V̂ (u) decreases along the trajectory of (5)
and satisfies V̂ (û) = 0. Therefore, for any ε > 0, there exists q > 0 such that,
for all t ≥ tq,

‖u(t) − û‖2/2 ≤ V̂ (u(t)) ≤ V̂ (u(tq)) < ε,

that is, limt→+∞ u(t) = û.
In particular, if Ω∗ contains a unique point, from the above analysis, the

neural network is asymptotically stable. The proof is completed.

Therefore, the proposed model is as excellent as (3) in terms of performance.

4 Illustrative Examples

In this section, we will discuss two examples to demonstrate the performance of
the proposed neural network. The simulations were conducted in MATLAB.

Example 1. Consider the following problem discussed in [14]:

minimize (x1 + 3x2 + x3)2 + 4(x1 − x2)2

subject to x3
1 − 6x2 − 4x3 + 3 ≤ 0,

1 − x1 − x2 − x3 = 0, x ≥ 0.

This problem has a unique solution x∗ = (0, 0, 1)T , and the associated Lagrange
multipliers are y∗ = 0, z∗ = −2. It is easy to verify that the problem is convex
on X = �3

+. According to Theorem 2, the neural network (5) should converge
to u∗ with any initial point u(0) ∈ �3

+ × �2 and be asymptotically stable at
u∗. All simulations verified this fact. In addition, it was interesting to note that
even with x(0) 
∈ X , the neural network still always converged to u∗. Fig. 2
shows such an example. This phenomenon indicates that the stability result in
Theorem 2 leaves space for improving.

Example 2. To illustrate the performance of the proposed neural network for
linear programming, we now solve a classical transportation problem [19]. Sup-
pose that M suppliers, each with a given amount of goods pi, are required to
supply N consumers, each with a given limited capacity qj . For each supplier-
consumer pair, the cost of transporting a single unit of goods is given as cij . The
transportation problem is then to find a least-expensive flow of goods from the
suppliers to the consumers that satisfies the consumers’ demand. Formally, the
problem can be described as follows

minimize
M∑
i=1

N∑
j=1

cijxij

subject to
N∑

j=1

xij ≤ pi, ∀1 ≤ i ≤M



Another Simple Recurrent Neural Network 123

0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

Time unit t

S
ta

te
s x1, x2, y

x3

z

Fig. 2. State trajectory of the neural network (5) with λ = 1, u(0) = (−4, 7,−3, 3,−8)T

in Example 1

M∑
i=1

xij ≤ qj , ∀1 ≤ j ≤ N

M∑
i=1

N∑
j=1

cijxij = min

⎛
⎝

M∑
i=1

pi,
N∑

j=1

qj

⎞
⎠

xij ≥ 0, ∀1 ≤ i ≤M, 1 ≤ j ≤ N.

The problem can be rewritten in the standard form of LP problem (1) with Q =
0, and the neural network (5) can be used to solve the problem. For illustration
purpose, let us consider a problem with M = 3 and N = 4. The parameters are
p = (10, 16, 18)T , q = (13, 5, 15, 10)T and

c =

⎛
⎝

0.1 0.2 0.1 0.5
0.5 0.1 1.0 0.8
1.0 0.1 0.4 0.1

⎞
⎠ .

The unique solution is

x∗ =

⎛
⎝

3 0 7 0
10 5 0 0
0 0 8 10

⎞
⎠ .

The neural network (5) (Q = 0) was simulated to solve the problem and obtained
the same solution. Fig. 3 depicts the output trajectory x(t) in one simulation
with λ = 1 and a random initial point, which converge to x∗.

5 Concluding Remarks

In the paper a new recurrent neural network was presented for quadratic and
linear programming. This model shares much similarity with two classical models
but combines their merits, that is, simple structure and good performance.



124 X. Hu and B. Zhang

0 10 20 30 40 50
−10

−5

0

5

10

15

Time unit t

O
ut

pu
ts

Fig. 3. Output trajectory of the neural network (5) with λ = 1 and a random initial
point u(0) in Example 2

The contribution of this invention is twofold. On one hand, it enriches the fam-
ily of recurrent neural networks for solving optimization problems, and therefore
offers flexibility for circuits practitioners in neural circuits design. On the other
hand, its design idea, actually, obtaning new models from existing ones by vari-
able substitutions, may shed light to the development of more powerful models.
Up to now, two new models have been devised using this idea (the other is pre-
sented in [15]). An interesting question arises: how many models on earth are
there in this category besides the known four? We believe that this open question
will stimulate many further investigations.

Acknowledgements

The work was supported by the National Natural Science Foundation of China
Grants 60805023,60621062and 60605003,NationalKey Foundation R&D Project
Grants 2003CB 317007, 2004CB318108 and 2007CB311003, China Postdoctoral
Science Foundation Grants 20080430032 and 200801072, and Basic Research
Foundation of Tsinghua National Laboratory for Information Science and Tech-
nology (TNList).

References

1. Xia, Y.: A New Neural Network for Solving Linear and Quadratic Programming
Problems. IEEE Trans. Neural Netw. 7, 1544–1547 (1996)

2. Tao, Q., Cao, J., Sun, D.: A Simple and High Performance Neural Network for
Quadratic Programming Problems. Applied Mathematics and Computation 124,
251–260 (2001)

3. Gao, X., Liao, L.: A Neural Network for Monotone Variational Inequalities with
Linear Constraints. Physics Letters A 307, 118–128 (2003)



Another Simple Recurrent Neural Network 125

4. Ghasabi-Oskoei, H., Mahdavi-Amiri, N.: An Efficient Simplified Neural Network
for Solving Linear and Quadratic Programming Problems. Applied Mathematics
and Computation 175, 452–464 (2006)

5. Yang, Y., Cao, J.: Solving Quadratic Programming Problems by Delayed Projec-
tion Neural Network. IEEE Trans. Neural Netw. 17, 1630–1634 (2006)

6. Barbarosou, M.P., Maratos, N.G.: A Nonfeasible Gradient Projection Recurrent
Neural Network for Equality-Constrained Optimization Problems. IEEE Trans.
Neural Netw. 19, 1665–1677 (2008)

7. Zhang, Y., Wang, J.: A Dual Neural Network for Convex Quadratic Programming
Subject to Linear Equality and Inequality Constraints. Physics Letters A 298,
271–278 (2002)

8. Liu, S., Wang, J.: A Simplified Dual Neural Network for Quadratic Programming
with Its KWTA Application. IEEE Trans. Neural Netw. 17, 1500–1510 (2006)

9. Hu, X., Wang, J.: Solving Generally Constrained Generalized Linear Variational
Inequalities Using the General Projection Neural Networks. IEEE Trans. Neural
Netw. 18, 1697–1708 (2007)

10. Liu, Q., Wang, J.: A One-Layer Recurrent Neural Network with a Discountinu-
ous Hard-Limiting Activation Function for Quadratic Programming. IEEE Trans.
Neural Netw. 19, 558–570 (2008)

11. Hu, X., Wang, J.: Design of General Projection Neural Networks for Solving Mono-
tone Linear Variational Inequalities and Linear and Quadratic Optimization Prob-
lems. IEEE Trans. Syst. Man, Cybern. B 37, 1414–1421 (2007)

12. Forti, M., Nistri, P., Quincampoix, M.: Generalized Neural Network for Nonsmooth
Nonlinear Programming Problems. IEEE Trans. Circuits Syst. I 51, 1741–1754
(2004)

13. Xia, Y.: An Extended Projection Neural Network for Constrained Optimization.
Neural Computation 16, 863–883 (2004)

14. Gao, X.: A Novel Neural Network for Nonlinear Convex Programming. IEEE Trans.
Neural Netw. 15, 613–621 (2004)

15. Hu, X., Zhang, B.: A New Recurrent Neural Network for Solving Convex Quadratic
Programming Problems with an Application to the k-Winners-Take-All Problem.
IEEE Trans. Neural Netw. (accepted)

16. Hu, X., Wang, J.: An Improved Dual Neural Network for Solving a Class of
Quadratic Programming Problems and Its K-Winners-Take-All Application. IEEE
Trans. Neural Netw. 19, 2022–2031 (2008)

17. Wang, Z., Perterson, B.S.: Constrained Least Absolute Deviation Neural Networks.
IEEE Trans. Neural Netw. 19, 273–283 (2008)

18. Kinderlehrer, D., Stampcchia, G.: An Introduction to Variational Inequalities and
Their Applications. Academic, New York (1980)

19. Hitchcock, F.L.: The Distribution of a Product from Several Sources to Numerous
Localities. J. Math. Phys. 20, 224–230 (1941)


	Another Simple Recurrent Neural Network for Quadratic and Linear Programming
	Introduction
	Formulation of the Model
	Stability Analysis
	Illustrative Examples
	Concluding Remarks



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




