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A New Recurrent Neural Network for Solving
Convex Quadratic Programming Problems With an

Application to the �-Winners-Take-All Problem
Xiaolin Hu and Bo Zhang

Abstract—In this paper, a new recurrent neural network is
proposed for solving convex quadratic programming (QP) prob-
lems. Compared with existing neural networks, the proposed one
features global convergence property under weak conditions, low
structural complexity, and no calculation of matrix inverse. It
serves as a competitive alternative in the neural network family
for solving linear or quadratic programming problems. In addi-
tion, it is found that by some variable substitution, the proposed
network turns out to be an existing model for solving minimax
problems. In this sense, it can be also viewed as a special case
of the minimax neural network. Based on this scheme, a -win-
ners-take-all ( -WTA) network with � � complexity is designed,
which is characterized by simple structure, global convergence,
and capability to deal with some ill cases. Numerical simulations
are provided to validate the theoretical results obtained. More
importantly, the network design method proposed in this paper
has great potential to inspire other competitive inventions along
the same line.

Index Terms—Asymptotic stability, -winners-take-all
( -WTA), linear programming, neural network, quadratic
programming.

I. INTRODUCTION

I N this paper, we consider solving the following convex
quadratic programming (QP) problem:

subject to (1)

where
are given with being positive semidefinite, and

is a nonempty box set defined as
. Note that some ’s can be and some ’s
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can be . In particular, if , the problem degenerates to
a linear programming (LP) problem.

Problem (1) is a typical as well as basic problem in the
optimization context and there exit many efficient numerical
algorithms for solving it [1]. However, in many engineering
applications such as signal processing, system identification,
and robot motion control, real-time solutions are often desired.
These problems may be high in dimension and dense in struc-
ture. Conventional numerical methods, however, may not be
efficient anymore in such occasions due to stringent require-
ment on computing time. A promising approach to handle these
problems is to employ artificial neural-network-based circuit
implementation. Because of their dynamic nature in the process
of searching for optima, neural networks can be implemented
physically by designated hardware such as application-specific
integrated circuits, where the optimization procedure is truly
done in a parallel manner.

Perhaps the concept of doing optimization by using analog
circuits was coined by Pyne half a century ago [2] but had not
gained much popularity until the mid 1980s when Hopfield
and Tank published some milestone articles [3], [4]. Now,
this concept has attracted tremendous interests from different
disciplines and has enjoyed a prosperous progress (see, e.g.,
[5]–[34] and references therein). As for solving LP or QP
problems, early development in neural networks refers to
[5], [6], and [7] among many others. But these models have
drawbacks either in the one-to-one correspondence between
the network equilibria and the solutions of the problems or in
the convergence property. In [8], Wu et al. considered solving
a quadratic (or linear) programming problem in the following
form:

minimize

subject to (2)

where the notations are the same as in (1). They proposed a
neural network whose equilibria are exactly solutions of the
problem and there is no need to tune parameters [8]. In addition,
this network is globally convergent to its equilibria. The disad-
vantage lies in its relatively complicated structure. For solving
the same problem, a simpler scheme that retains all of its merits
was proposed in [9]. The dynamics of the improved scheme can
be described by

(3)
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where and . In
2006, this network was further simplified to [10]

(4)

In fact, an even simpler neural network had already been pre-
sented in [11] before that

(5)

where is a box set defined as in (1) and is a projection
operator defined as with

(6)

Clearly, the operator is a special case of where
is set to , the nonnegative quadrant of . In other words,
neural network (5) can solve a more general problem than (2)
[ in (2) can be replaced by ]. Another idea
to solve (2) is to use the time-delayed projection neural net-
work [12]. But this network requires calculation of matrix in-
verse, which makes it not very much suitable for real-time ap-
plications because in such scenarios this calculation cannot be
performed beforehand. Clearly, the aforementioned neural net-
works in [9]–[12] can be used to solve problem (1) as well, but
inevitably, slack variables are needed to transform the inequality
constraints to equality constraints first which will enlarge the
scale of the networks. A suitable choice for resolving this diffi-
culty is to adopt the following neural network invented in [13]:

(7)

where , and is a con-
stant scaling factor. Other candidates may refer to [14] and [15].
However, it is easy to see that the model in [14] entails much
more interconnections than (7), and the model in [15] suffers
from calculating multiplications and inverses of some param-
eter matrices, which makes it not very much suitable for online
optimization. In fact, the primary advantage of the model in [15]
lies in its fewer states and integrators for solving small scale op-
timization problems.

If is positive definite, several other salient networks are
available for solving (1), e.g., [18]–[20], and [32]. The networks
in [18] and [19] both suffer from the same difficulties as the net-
works in [12] and [15], while the network developed in [32],
[20] does not, which is called extended projection neural net-
work

(8)

where is a scaling factor.

A comparison of (7) and (8) leads to the motivation of this
paper. In the equilibrium state, the right-hand side of (8) is equal
to zero. Then, we have and .
Substituting them into the first line on the right-hand side yields
a neural network very much like (7). The only difference is that
there is a scaling parameter 2 in (7). Such a substitution of-
fers an advantage over the original neural network in dealing
with problem (1) with being positive semidefinite only. If
we look at the neural network (8) from a different angle, then
some interesting questions will arise: Is it useful to substitute

to the second and third
lines of the right-hand side of (8)? Does the resulting neural net-
work have a merit similar to (7), that is, have the ability to solve
problem (1) with being positive semidefinite only? One of
the primary aims of this paper is to answer the two questions.
Note that if the inequality constraints are absent in (1), both an-
swers are positive—see [11] and refer to (5). This encouraging
fact seems to support our conjecture. Actually, in Section II, we
will show that when the inequality constraints are present, the
answers are also positive. The second aim of this paper is to de-
sign a simple neural network based on the above idea for solving
the -winners-take-all ( -WTA) problem, a basic problem with
many applications. This is the theme of Section III. Section V
summarizes the contents of this paper and discusses several fu-
ture directions.

Throughout this paper, if is a vector, then .
denotes the nonnegative quadrant of . Moreover, it

is always assumed that the feasible region of problem (1) is
nonempty, which ensures that the solution set of the problem
is nonempty.

II. A NEW NEURAL NETWORK MODEL

A. Model Description

The following recurrent neural network is proposed in this
paper for solving (1):

• state equation

(9a)

• output equation

(9b)

where is any positive constant. The output of the network can
be regarded as as well. This is because, from Section II-C, it
will be seen that the network is globally convergent to its equi-
librium set, and in the equilibrium state, is equal to .

The block diagram of the proposed neural network is plotted
in Fig. 1. In the figure,

. Similar
to neural networks (3), (4), (5), (7), and (8), analogy circuit im-
plementation of the proposed neural network will entail some
electronic integrators (for realizing integration/derivation), am-
plifiers (for realizing activation functions), multipliers, adders,
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Fig. 1. Architecture of the proposed neural network (9): (a) outputs �� �� �
�� � � � � ��, which is fed into (b)–(d) on their left-hand sides; (b)–(d) accept ��
and output � �� � �� � � � � ��� � �� � �� � � � ��� and � �	 � �� � � � � 
�,
respectively, which are then fed into (a) on the left-hand side as its input.

and some interconnections among them. Circuits practitioners
may refer to [35] for general idea.

B. Model Comparisons

First, we would like to point out the connection of the pro-
posed neural network with an existing model. If we let

and

then the neural network (9) can be written as

(10)

where . In fact, (10) represents
a neural network model invented in [25] for solving a class of
convex quadratic minimax problems. In this sense, the neural
network (9) can be viewed as an application of (10) for solving
QP problems. This novel discovery will eliminate the necessity
of detailed stability analysis of (9). See Section II-C.

As discussed in the introduction, for solving the QP problem
(1), among the neural networks that entail no calculation of mul-

tiplication and inverse of time-varying matrices, the two neural
networks (7) and (8) are representatives of the state of the art
in terms of both convergence performance and structural com-
plexity. In what follows, we will show that the proposed network
(9) can compete with them.

Next, we show the equivalence of the proposed network and
the network (8) in terms of model complexity. First, it is ev-
ident that the number of integrators of the two networks are
the same because both of them have the same state variable

. Second, (8) entails amplifiers for realizing
the activation function and amplifiers for realizing the
activation function . In order to implement (9), the same
number of amplifiers is needed. (Though the output variable
appears three times on the right-hand side of (9), it does not
imply that the same operator is needed to be implemented three
times.) Third, based on the same idea [that is, in (9) is
needed to be implemented once only], it is easy to see that the
numbers of multipliers and adders to be implemented for (9) are
the same as those for (8), respectively. Finally, consider the in-
terconnections among the two neural networks. It is noticed that
in Fig. 1 if ’s instead of ’s are fed into Fig. 1(c) and (d) as
their inputs (see dashed rectangles in Fig. 1), the diagram be-
comes nearly the same as that of the network (8); the only dif-
ference would be the different scaling factors (time constants).
In other words, to obtain the diagram of (9) from the diagram of
the network (8), what we only need to do is to change the direc-
tions of some connections, and no single connection, or other
element, is needed to be added to the diagram. In summary, the
proposed neural network has exactly the same structural com-
plexity as the neural network (8).

According to the same comparison criteria, it can be shown
that the neural network (7) shares nearly the same structural
complexity of the neural networks (8) and (9). Nevertheless, this
model entails additional adders and some corresponding con-
nections in contrast to (8) and (9). It is because, in implementing

are needed to be added to
though the calculation of is not necessary as it can be
obtained from the bottom equation on the right-hand side of (7).
But the other two neural networks do not need this additional
operation. From this sense, (8) and (9) are slightly superior to
(7) in general.

Regarding the convergence performance, however, the neural
network (7) outperforms the neural network (8) because it is
able to solve degenerate QP problems [i.e., in (1), is positive
semidefinite only] while (8) has not exhibited this capability yet
through rigorous analysis. In Section II-C, we will show that the
new neural network (9) also has this capability.

Overall, based on the above criteria, the proposed model (9)
is the best among the three competitors.

Note that the models (3), (4), (5), and (7) mentioned before
are capable of solving both LP and QP problems. There exist
other neural networks capable of solving LP problems only, and
two typical models are presented in [22] and [23]. We remark
that even for solving LP problems only, which are in the form
of (1) ( is set to zero), the proposed neural network is simpler
in structure than those in [22] and [23]. For brevity, detailed
discussion is omitted here. Interested readers may refer to the
two references for a comparison.
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C. Stability Results

In this section, we will show that the proposed neural network
(9) is stable and globally convergent to a solution of problem (1).
First, a lemma is introduced.

Lemma 1 [20, Lemma 1]: A point is a solution of
problem (1) if and only if there exist and
such that

(11)

According to Lemma 1, it is trivial to show one of the signif-
icant properties of the neural network (9).

Theorem 1: A point is a solution of problem (1) if
and only if there exist and such that they
constitute an equilibrium point of the neural network (9).

Another significant property of the proposed neural network
refers to its stability and global convergence. This can be shown
by rewriting it into (10), which is in the form of a neural network
for solving minimax problems in [25]. The following results
follow from [25, Th. 3] directly.

Theorem 2: With any initial point
, the neural network (9) is stable in

the sense of Lyapunov and converges to a solution of (1). In
addition, i) if the neural network has a unique equilibrium
point, then it is globally asymptotically stable; ii) if is large
enough, the state trajectory will reach an equilibrium point
within finite time.

Theorem 2 actually answers the questions posted in the in-
troduction. It shows that for solving problem (1), the proposed
neural network (9) requires the positive semidefiniteness on
only, instead of positive definiteness that is required by neural
network (8). In this sense, neural network (9) is as excellent as
neural network (7). Moreover, both of the neural networks do
not require that the initial point and , but
(8) does.

The following corollary is an immediate consequence of The-
orem 2.

Corollary 1: In problem (1), let denote the
row vectors of and , respectively

. If is positive definite and the vectors for
, and for are linearly inde-

pendent, then the neural network (9) is globally asymptotically
stable in the sense of Lyapunov at its unique equilibrium point

.
Proof: The positive definiteness of ensures the unique-

ness of the solution to problem (1), while the other conditions
ensures the uniqueness of Lagrangian multipliers and [1].
Then, the result follows from Theorem 2 immediately.

Note that if is positive semidefinite only, problem (1) may
also have a unique solution, and neural network (9) may also be
asymptotically stable.

According to Theorem 2, in circuit implementation, should
be made as large as possible. But how large is “large enough”
is a problem. A useful hint in practice is to specify a solution
precision such that when all trajectories of enter the set

we terminate the solving procedure.

This mechanism works in applications where the optimum so-
lution has special properties, e.g., any component must be
either zero or one. See Section III for such an application.

III. A NEW -WINNERS-TAKE-ALL NETWORK

A. Introduction

The -WTA networks for selecting the most prominent
elements are central processing components in competitive
learning neural networks and nearest-neighbor pattern classi-
fiers. Their task can be mathematically described as follows.
Suppose that a list of items is supplied as inputs
to a network. Let be the
(unknown) permutation that gives the decreasing order of the
list

(12)

where is a given integer. The output of the
networks should satisfy

(13)

where corresponds to the input , and are two
disjoint sets.

There exist many -WTA networks that can be classified into
two categories in terms of their model complexities or

. The complexity is defined with respect to the number of
connections among neurons (amplifiers). The study of -WTA
network by using circuits is mainly based on the Hop-
field–Tank neural network model invented in [3] and [4], and an
example can be found in [36] (see also references therein). Be-
cause of the high complexity in circuits design, these networks
are limited to solving small scale problems. Some -WTA
networks can be found in the literature, e.g., [19] and [37]–[41],
to list a few. In particular, if all inequalities in (12) take the strict
inequality signs, i.e.,

(14)

Marinov and Hopfield proposed the following network [40]:
• state equation

(15a)

• output equation

(15b)

where are fixed circuit parameters and
are parameters that need to be appropriately selected according
to the input signal . The function needs to satisfy some
conditions and a typical example is the sigmoid function

, which can be regarded as a smoothed
projection function defined in (6) by setting . Ulti-
mately, the outputs will enter
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( is a parameter that needs to be appropriately chosen to-
gether with other parameters), while the others will not. A sys-
tematic procedure was presented for choosing these parameters.
As one example in [40] shows, failing to select proper parame-
ters may lead to incorrect output.

In some references, e.g., [19], [37], and [42], the two sets
and in (13) are specified as two point sets and , re-
spectively. Then, the -WTA networks should output a sequence
of 1 and 0 only. A newly developed network was presented in
[41]

• state equation

(16a)

• output equation

(16b)

where is a scaling factor, and for
. In contrast to (15), this network can solve the

problem with the general condition (12). It was shown to be an
network as well. In order to guarantee the global conver-

gence to the correct output, the parameter should be chosen
such that . Clearly, this selection
is much easier than selecting those parameters in the network
(15). But this network still has limitations. First, anyway, it is
demanded to properly select a parameter. Since the signals ’s
are unknown beforehand, should be selected as small as pos-
sible. But smaller in general leads to slower convergence. For
choosing this parameter, one has to make a balance between pre-
cision and speed. Second, it was only shown to be able to solve

-WTA problems with the assumption and may
not handle the more general situation

(17)

Actually, sometimes the following relationship may be true:

where . In
what follows, the elements
are all called the th largest elements in . One needs to ran-
domly select some of these elements to constitute the largest
ones. This is an ill case of the -WTA problem, but in many ap-
plications, it cannot be avoided. Obviously, in this case, there is
no way to choose a proper for the network (16).

Recently, another -WTA network was devised, which can
conquer the difficulties encountered by (16), [42]:

• state equation

(18a)

• output equation

(18b)

where

. It is seen that no parameter is needed to choose.
Moreover, in view of its formulation in [42] and the analysis in
Section III-B, it is easy to see that in the ill case of (17), the net-
work still works. The disadvantage is its relatively complicated
structure in contrast to (16). In what follows, we design a sim-
pler network while its merits are retained.

B. Linear Programming Formulation

Let and in (13) be and , respectively. It is
known that the -WTA problem described in (12) and (13) is
equivalent to the following 0–1 programming problem [37]:

minimize

subject to

(19)

The following result was claimed in [42] without a proof.
Here a complete proof is provided.

Theorem 3: If (12) holds, then problem (19) is equivalent to
the following continuous LP problem:

minimize

subject to

(20)

Proof: In view of the equivalence of the -WTA problem
and (19), if (12) holds, there exists a unique solution to (19).
Clearly, is a feasible solution to (20). It is only needed to show
that is a strict (local) minimum solution of (20). Consider the
perturbation of in the feasible direction, denoted by ,
where is small for . In order to satisfy the
constraints, the following rules must be fulfilled:

Let and . Then

Since , neither nor is null. Define
. It follows:
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TABLE I
A �-WTA ALGORITHM

Since problem (19) is equivalent to the -WTA problem and
solves (19), we know from (12) that ,
which follows:

Adding the above two inequalities yields

Denote the objective function in (20) by . Then, the pertur-
bation of the objective function near is

By considering that is arbitrary, it is concluded that is a
strict minimum of (20), which completes the proof.

Now consider the case of (17). By defining three auxiliary
sets

where all elements in are greater than those in , all ele-
ments in are greater than those in , and all elements in
are equal, we can obtain the following results.

Theorem 4: Suppose that (17) is valid. Let denote an op-
timum solution of (20).

1) If , then .
2) If , then .
3) If , then and there must exist at least

one so that and .
4) There exist at least nonzero elements in .

Proof: We prove 1) only because 2) and 3) can be reasoned
similarly and 4) is obviously true. Construct a feasible solution

to problem (20) by letting and ,
where and . In order
to satisfy the constraint in (20), we have

where . Since is also a feasible solu-
tion to problem (20), it has at most elements equal to 1. As a

consequence, we can construct by letting at least com-
ponents equal to with positive . In other words, there
are at least elements in . Let , then

Denote the objective function of (20) with and , respec-
tively, by and . Then

which follows because . That is, is
greater than or equal to at least elements of the input,
which implies that cannot belong to .

Theorem 4 gives a simple algorithm to select largest ele-
ments of an input . See Table I. We emphasize that when or

or both of them are empty, Theorem 5 is still valid and the
algorithm in Table I still guarantees the correct output in these
extremely ill cases.

C. A New -WTA Network

According to Table I, the critical step for the -WTA oper-
ation is to solve the LP problem (20). A new -WTA network
based on (9) can be designed for this purpose. Note that in the

-WTA networks (15) and (16), the symbol is used to repre-
sent the output. For the sake of consistency in notations, we need
to replace in (20) with the symbol first. Then, the following

-WTA network can be designed:
• state equation

(21a)

• output equation

(21b)

where for and is any positive con-
stant. Note that can be also regarded as the output of this
network, similar to network (9).

The block diagram of this network is illustrated in Fig. 2.
Clearly, the complexity of the network is .

According to Theorem 2 and Corollary 1, the following is
true.

Corollary 2: If (17) holds, then the -WTA network (21) is
globally convergent to a solution of the problem. If in addition

is large enough, the convergence time is finite. In particular, if
(12) holds, the -WTA network (21) is globally asymptotically
stable.

D. Model Comparisons

Theoretically, the -WTA network (21) as well as network
(18) do not need to choose any parameter (the scaling factor
can be any positive number), which can be deemed as a great
advantage over networks (15) and (16). In addition, the two net-
works (18) and (21) allow for some equal input signals [see
(17)], a situation often encountered in practice but excluded by
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Fig. 2. Architecture of �-WTA network (21).

TABLE II
COMPARISON OF FOUR �-WTA NETWORKS

networks (15) and (16). These facts have been indicated in the
last two rows of Table II for a clear comparison. Nevertheless,
the latter two have their own merits. For instance, network (15)
is much versatile as it can identify the th largest signal
simultaneously.

Then, we compare the structural complexities of the four
-WTA networks (15), (16), (18), and (21). Because all of them

are of complexity, it is necessary to give a more accurate
estimation of the number of elements in them. See Table II.
Note that in order to distinguish these networks in more details,
one multiplier is defined in terms of a multiplication operation
of two scalars, and similarly, one adder is defined in terms of
an addition operation of two scalars. Thus, these two numbers
are closely related to the number of interconnections among a
network.

Let us take the model (21), for example, to show how the
numbers in Table II are obtained. It is obvious that this model
entails integrators and amplifiers because it has
states and activation functions. Multiplying to (or
multiplying to the right-hand side of the equation) needs
multipliers, and multiplying to needs one multi-
plier. This is why the third entry in the table corresponding to
the network is . On the right-hand side of the first state
equation, there are two scalars needed to be added for each , so
in total these equations need adders. The second state equa-
tion needs adders as well, because there are items to
be added together. Every output equation needs two adders and

such equations need adders. Summation of these numbers
gives adders. The other three networks can be analyzed in
the same way by paying attention to the following two points.
First, when counting the number of adders in (18), one should
keep in mind that the items and need to be cal-
culated once only though they appear at several places. Second,

Fig. 3. Analytical solutions to the problem in Example 1.

for the sake of fairness, when counting the number of multipliers
in (15), the circuit parameters are not taken into ac-
count, and each sigmoid function is roughly defined to entail
two adders and three multipliers for a quantitative comparison.

From Table II, it is seen that the -WTA (16) is the simplest
model, and network (21) entails one more integrator than (18)
but fewer adders (the difference between the numbers is

). When is large, the superiority of (21) over (18) becomes
prominent.

From above comparisons, it can be concluded that the new
-WTA network makes a good balance between performance

and structural complexity.
Remark 1: Because the LP problem (20) has no inequality

constraints, all of the neural networks (3), (4), (5), and (7) can
be tailored to solve the problem as well. The simplest one among
them, namely, (5), would assume exactly the same architecture
as illustrated in Fig. 2, and the only difference would lie in the
scaling factors.

IV. NUMERICAL EXAMPLES

In this section, we use several numerical examples to illustrate
the performances of proposed neural networks (9) and (21). The
simulations are conducted in MATLAB.

Example 1: Consider a QP problem in the form of (1) with

and . The equality constraints is
absent here. It is noted that is positive semidefinite only and
there are multiple minima to the problem. To see this point, we
rewrite the problem in the following equivalent form:

minimize

subject to

The feasible region is depicted in Fig. 3, which is enclosed by
bold line segments. Obviously, any point on the line segment

solves the problem.
Neural network (9) is simulated to solve the problem with

. Fig. 4 displays the state trajectories of the network
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Fig. 4. State trajectories of neural network (9) in Example 1 with three random
initial points.

in three independent runs with different initial points. Ulti-
mately, the network converges to

Fig. 5. State trajectories of neural network (9) in Example 2 with a random
initial point.

, and , re-
spectively. It is easily verified that the points

and are on the line seg-
ment in Fig. 3.

Example 2: Consider a QP problem in the form of (1) with

and . It is easy to check that is positive definite. If
the neural network (9) is used to solve the problem, according
to Theorem 2, it will be globally asymptotically stable with any
positive . Experiments verified this fact. Actually, all trajec-
tories converged to the unique solution of the problem. For in-
stance, Fig. 5 depicts the transient behavior of the network with

started from a random initial point. The solution found in
this run is .

Example 3: Let us solve a -WTA problem with network
(21). The problem is taken from [40], which was designed to
test the performance of (15). The list of inputs to be processed
is described by
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Fig. 6. Output trajectories of �-WTA network (21) in Example 3 with a random
initial point.

Fig. 7. Computing time for different � values.

Whatever is, the descending list order is as follows:

the first 20 elements

the smallest 80 elements

The task is to signal the largest 20 elements, namely,
. This input list is a “difficult” one

as the distance between the 20th and 21st largest ones is only .
First, we set and observe the dynamic behavior of the

proposed -WTA network. It is seen that from any initial point,
the network always converges to the correct solution . Fig. 6
depicts the output trajectories in one of these runs, where the
scaling factor is set to 10.

In what follows, we examine the influence of value on the
performance of the proposed -WTA network. The evaluation
criterion is the convergence time. It is certainly unrealistic to

Fig. 8. Inputs and outputs of �-WTA network (21) in Example 4.

expect that the outputs will exactly achieve zeros or ones in
the presence of numerical errors (round-off error, integration
error, etc.). So we specify a precision to judge the convergence,
namely, when the following holds:

where stands for the exact solution, which is known in this
case. We consider equal to , re-
spectively. Fifty simulations are carried out for each started
from random initial points between and 50. In all simula-
tions, is set to 10 and is set to . The statistical results
are plotted in Fig. 7 by using boxplot method.1 Clearly, if de-
creases, the computing time increases, which is in agreement
with the fact that smaller makes the 10th and 80th elements
closer, and in the sequel, makes the problem more difficult to
solve.

Example 4: The last example is used to test whether the pro-
posed -WTA (21) works if condition (17) is true. In -WTA
problem, let and the inputs

if and
otherwise, where increases from 0 to 1 continuously, which
leads to four continuously time-varying input signals (see the
top graph in Fig. 8). When coincides with , and is
within approximately , where either of them can be
regarded as the second largest element, the -WTA network (16)

1The box has lines at the lower quartile, median, and upper quartile values.
The whiskers are lines extending from each end of the box to show the extent
of the rest of the data. Outliers denoted by “�” are data with values beyond
the ends of the whiskers. A detailed description can be found in MATLAB’s
documentation.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on April 7, 2009 at 20:52 from IEEE Xplore.  Restrictions apply.



HU AND ZHANG: A NEW RECURRENT NEURAL NETWORK FOR SOLVING CONVEX QP PROBLEMS 663

cannot be applied here. We use network (21) with to ac-
complish the task and the outputs are recorded in the other four
graphs of Fig. 8. Notice that when is within about

and are both equal to 0.5, which implies that either or
should be selected as a winner according to Theorem 4.

V. CONCLUSION AND FUTURE WORKS

In this paper, we consider solving a general class of convex
QP problems by using a new recurrent neural network. This net-
work shares much similarity in structure with a series of ex-
isting neural networks in the literature, and is comparable with
the very best in this series in terms of either convergence results
or structural complexity. A notable feature of the proposed net-
work is that it can be also used to solve LP problems. The contri-
bution of this invention is twofold. On one hand, it enriches the
family of recurrent neural networks for solving LP and QP prob-
lems. On the other hand, its design idea and stability analysis
may shed light to the development of more powerful models.

Related to this neural network, many further investigations
are worth conducting, and we believe that the following direc-
tions should be highlighted. It has been seen that the new model
(9) is obtained by substituting for in the second and third
lines of (8). So, on one side, does this substitution offer other
advantages besides weaker convergence conditions (e.g., higher
convergence rate, more convenience for analog circuit imple-
mentation) or, on the contrary, does it sacrifice any performance
of its predecessor? On the other side, how about doing such a
substitution in the second line or the third line alone? And more
generally, how about the combinations of these substitutions:

? For
instance, what are the characteristics of the following neural net-
work (or the like):

There exists a variety of combinations of such substitutions. But
the global convergence results of the resulting neural networks
may not be easily relayed from one to another. Most likely, it
should be studied one by one. A systematic investigation in this
regard is highly demanded, which will, we believe, expand the
family of recurrent neural networks for optimization to a large
extent.

The latter part of this paper concerns an application of the
proposed neural network on the -WTA problem. The problem
is first transformed into an LP problem, and then solved by
using the proposed neural network. Compared with other dis-
tinguished -WTA networks, the new scheme features no need
for carefully choosing parameters and the capability to handle
some ill cases, together with a relatively simple structure. Fur-
ther investigations on this topic may include circuit realization
by means of techniques presented in [27], [35], and [37]–[39]
and clocking time estimation for precessing a sequence of signal
input lists, which come one by one at a constant rate [43].
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