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An Improved Dual Neural Network for Solving a
Class of Quadratic Programming Problems and

Its �-Winners-Take-All Application
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Abstract—This paper presents a novel recurrent neural network
for solving a class of convex quadratic programming (QP) prob-
lems, in which the quadratic term in the objective function is the
square of the Euclidean norm of the variable. This special structure
leads to a set of simple optimality conditions for the problem, based
on which the neural network model is formulated. Compared with
existing neural networks for general convex QP, the new model is
simpler in structure and easier to implement. The new model can
be regarded as an improved version of the dual neural network in
the literature. Based on the new model, a simple neural network ca-
pable of solving the -winners-take-all ( -WTA) problem is formu-
lated. The stability and global convergence of the proposed neural
network is proved rigorously and substantiated by simulation re-
sults.

Index Terms—Global asymptotic stability, -winners-take-all
( -WTA), optimization, quadratic programming (QP), recurrent
neural network.

I. INTRODUCTION

S OLVING optimization-related problems by using recur-
rent neural networks has attracted much attention since the

pioneering work of Tank and Hopfield in the 1980s [1], [2]. The
models and applications of this category of neural networks
have continually enjoyed a prosperous development during the
past two decades, e.g., see [3]–[6], [8]–[19], and references
therein. The primary motivation of developing recurrent neural
networks for solving optimization problems (as well as other
problems such as matrix algebra problems [21], which is an-
other hot topic in neural network community) is not based on
developing new numerical algorithms that run on conventional
digital computers. The working principle of this type of neural
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networks is fundamentally different from those of iterative nu-
merical algorithms such as interior point algorithms and linear
matrix inequality (LMI) algorithms. These neural networks are
essentially governed by a set of dynamic equations, which have
at least two advantages. On one hand, they give hope to build
some brain-like computing models that mimic some working
principles of the biological counterparts. Indeed, the pioneering
model in this field, Hopfield neural network, originated from
neurobiology. On the other hand, their network structures make
it possible to design some specific analog circuits that are
capable of real-time computing. Such specific circuits can solve
problems in running time at the orders of magnitude much
faster than the conventional algorithms executed on general
purpose digital computers.

In designing a recurrent neural network for solving a specific
problem, two major factors refer to its convergence property and
structural complexity. Great efforts have been made to reduce
the model complexity while preserving the desired convergence
property. For instance, for quadratic programming (QP), a se-
ries of neural networks have been proposed in [6], [10], [15],
and [20] with lower model complexity. In this paper, we are
concerned with solving a special class of QP problems by de-
signing a neural network with lower model complexity than ex-
isting ones.

The QP problem we are concerned with is as follows:

minimize

subject to (1)

where is the decision vector,
are constants, and is a closed

convex set. In this paper, unless specified otherwise, is either
a box set defined as

(2)

where are constants, or a sphere set defined as

(3)

where and are constants. Throughout this paper,
denotes the 2-norm of a vector.

A general QP problem is often written in the form of (1) with
the objective function where .
Clearly, problem (1) represents a special case of the general
QP problem with being an identity matrix. We remark that
when is a box set and is a diagonal matrix with all di-
agonal elements positive (e.g., in some scenarios, we need to
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minimize the weighted sum of the square of the variables), the
problem can be transformed into (1). In fact, define a new vari-
able , then . Substitution of into the
general QP problem will yield

minimize

subject to

which has the same form as (1).
Problem (1) has many applications. One of them refers to the

calculation of the minimum Euclidean distance from a point to
a convex set. The problem is formally stated as follows:

minimize

subject to (4)

where denotes the given point and denotes the set. If is
defined by a certain combination of sphere sets, linear equalities,
and linear inequalities, for instance

(5)

where the parameters are the same as in (1), problem (4)
falls into the category of problem (1). This minimum distance
problem is often encountered in robot navigation, where the
environment is modeled geometrically by lines and curves,
especially in map-based navigation [22]. Online solution to this
type of problems is a basic requirement in such scenarios, and
the recurrent neural network approach is of particular interest
as it is well suited for online computation [1], [2].

Throughout this paper, we assume that the feasible set of
problem (1) is nonempty, which ensures that there exists a
unique solution to the problem because it is a strictly convex
optimization problem.

II. MODEL DESCRIPTION AND COMPARISONS

A. Model Description

The recurrent neural network proposed in this paper for
solving (1) is governed by the following:

• state equation

(6a)

• output equation

(6b)

where is a constant scaling factor and and are
two activation functions. is defined by

(7)

Specifically, if is a box set defined in (2), then
with

where . If is a sphere set defined in (3), then

.

The other activation function is a special case of in
which is set to , the nonnegative quadrant of .

The architecture of the network is illustrated in Fig. 1. The
matrices and in the figure are denoted by and

, respectively; and other parameters in (6) are self-ev-
ident in the figure. The model comprises some amplifiers (re-
alizing the nonlinear activation functions and ), inte-
grators, summators, multipliers, and interconnections. Among
them, the number of amplifiers, integrators, and interconnec-
tions is crucial in determining the structural complexity of the
neural network. Let us discuss one by one.

• In this neural network, there are amplifiers in total.
Different from most neural networks in the literature, some
amplifiers [those corresponding to ] in the proposed
model are integrated in others [those corresponding to

]. These amplifiers can be realized by some simple
circuit units [5], [8], [9].

• From Fig. 1, it is seen that integrators are needed.
In analog circuit implementation, integrators are realized
by capacitors [1], [2]; and the fewer integrators we have,
the better. Note that in the proposed neural network, the
number of integrators is not equal to the number of ampli-
fiers, which does not occur in many models such as in [1],
[2], [4], [8], [9], and [15].

• The number of interconnections in the model can be
counted in the following way. From Fig. 1(a), there are

connections inside this module (the inputs and
outputs are not counted) and there are such modules. So,
there are connections in these modules. From
Fig. 1(b), there are connections inside this module
(the inputs and outputs are not counted) and there are
such modules. So, there are connections in these
modules. From Fig. 1(c), there are connections
inside this module (the inputs and outputs are not counted)
and there are such modules. So, there are
connections in these modules. Connecting the outputs ’s
of modules (b) and the outputs ’s of modules (c) to the
input layers of modules (a) requires connec-
tions. Connecting the outputs ’s to the input layers of
modules (c) and (d) requires connections as
well. In total, there should be
connections in the neural network.

B. Model Comparisons

In view that (1) is a special case of general QP problem,
many existing neural networks in the literature (e.g., [1]–[7],
[10]–[13], [15], and [16]) can solve it. Among them, the models
devised more than ten years ago such as in [1]–[6] are not com-
petitive with latecomers in terms of either convergence property
or structural complexity. The model in [12] can be regarded as
a variant of that in [13], but with higher structural complexity.
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Fig. 1. Architecture of the proposed neural network (6). (a) outputs each com-
ponent of � ��� ��� ������ � �� � � � � 	�, which is fed into (b) and (c).
(b) and (c) accept � ��� and output � �
 � �� � � � ��� and � �� � �� � � � � �,
respectively, which are then fed into (a) as an input. The output of (a) is the
output of the entire network.

The model in [16] is very much complicated in structure; in-
deed, its value lies in its proved exponential convergence, not in
its structure. Different from other models mentioned above, the
model in [11] is not based on differential equation theory, but on
differential inclusion theory, which makes it a little difficult for
comparison with the new model (6). However, one point is clear:
its convergence depends on some parameters that are often in-
convenient to choose. This is a shortcoming in view that there
are no such parameters in model (6). In the following, we com-
pare the proposed model (6) with the models in [10], [15], and
[13] for solving (1).

The model in [7] and [10] is called the dual neural network.
When specialized for solving (1), its dynamic equations become
as follows:

• state equation

(8a)

• output equation

(8b)

where , with being an
identity matrix, and with

Apparently, there are activation functions in this net-
work. A closer look at the definition of tells that actually
only activation functions are required, because a pro-
jection to a point is always equal to and to ensure that this
happens there is no need to use a projection function. Then, the
realization of the neural network entails amplifiers. By
drawing the diagram of the neural network as we do for neural
network (6), it is not difficult to know that the neural network re-
quires integrators and
interconnections (the first term corresponds to the state equa-
tion and the second term corresponds to the output equation), in
addition to some summators and multipliers. Here, and in what
follows, when we estimate the number of interconnections in a
neural network, the constants and first-order terms with respect
to are neglected.

The model in [15] is a simplified version of (8). When spe-
cialized for solving (1), its equations become as follows:

• state equation

(9a)
• output equation

(9b)

where , ,
, with being

an identity matrix, and
with

By drawing the diagram of the neural network, it is not difficult
to know that the neural network requires amplifiers,
integrators, and interconnections
(the first term corresponds to the state equation and the second
term corresponds to the output equation) in addition to some
summators and multipliers.

The third model refers to the extended projection neural net-
work formulated in [13] for solving general convex optimization
problems. When specialized for solving (1), its state equation
becomes

(10)

where , and its output is simply . The neural network
entails amplifiers, integrators, and
interconnections in addition to some summators and multipliers.

For comparison purpose, we list the numbers of amplifiers,
integrators, and interconnections of these neural networks in
Table I. Note that is always smaller than or equal to [other-
wise, problem (1) may have no solution]. We have the following
observations: 1) the numbers of amplifiers in these neural net-
works are all the same; 2) the proposed neural network requires
fewest integrators; and 3) the proposed neural network and the
extended projection neural network require fewest interconnec-
tions. These observations then lead to the conclusion that among
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TABLE I
COMPARISONS OF SEVERAL SALIENT NEURAL NETWORKS IN LITERATURE FOR SOLVING (1)

these models the proposed neural network (6) is simplest in
structure. Moreover, it should be noted that the neural network
(9) entails computation of matrix inverse, which makes it less
suitable for solving problems with time-varying coefficient
in the equality constraint . Other models in the table do
not have this limitation.

Before ending this section, we would like to point out the con-
nection between the new model (6) and the dual neural network
(8), which can be reasoned by some basic algebraic manipula-
tions together with the observation:
for any .

Theorem 1: If , then the neural networks (6) and (8)
are equivalent.

In this sense, the proposed neural network is an improved
version of the dual neural network for solving the special QP
problem (1).

III. CONVERGENCE ANALYSIS

We first introduce some basic properties of the activation
function defined in (7).

Lemma 1 [23, pp. 9–10]: For any and any ,
where is a closed and convex set in

For any

By assumption, there always exists a unique optimal solution
to problem (1). In what follows, the unique optimal solution is
denoted by .

Theorem 2: , where

denotes the equilibrium point of the state
equation (6a).

Proof: According to the Karush–Kuhn–Tucker (KKT)
conditions (see, e.g., [24]), is a solution to problem (1) if
and only if there exist and such that

Substitution of the first equation into the other two equations
above yields

(11)

which gives the desired results.

Lemma 2: Consider the following function:

(12)

where . Then:
1) is continuously differentiable with respect to and , and

the partial derivatives are given by
and ;

2) is convex in .
Proof:

1) Note that can be written as

To show the continuous differentiability of , we only need
to show that the function is con-
tinuously differentiable with respect to . Define another
function as , then

Notice that is continuously differentiable in both and
, and the minimum solution of the right-hand side (RHS)

of above equation is uniquely attained at for
any fixed , then it follows from [25, Ch. 4, Th. 1.7]
that is differentiable and

(This is a special case of [18, Lemma 3].) The partial
derivatives and then readily follow from
the above equation.

2) For any and , we have

where and
. By using Lemma 1, it is easy to show that

which implies the convexity of [24].
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Theorem 3: is an equilibrium point of the
state equation (6a) if and only if it is a solution to the following
problem:

minimize

subject to (13)

where is defined in (12).
Proof: From Lemma 2, is a convex and continu-

ously differentiable function. Then, by the KKT conditions,

is the solution to (13) if and only if

Substitution of and into the above equations re-
sults in (11). The theorem is then proved.

It is noted that the state equation of the proposed neural net-
work (6) can be equivalently written as

(14)

where , , and is defined
in (12). Equation (14) represents the well-known projection
neural network for solving the convex optimization problem
(13) studied extensively in the literature (see, e.g., [9], [26], and
[27]). However, in our case, is continuously differentiable
but not twice continuously differentiable. As a result, many ex-
isting stability results cannot be applied here directly. However,
with some modifications in the proofs, we can still obtain some
significant results for (14), and consequently, for (6a).

Lemma 3: There exists a unique continuous state tra-
jectory for (6a) with any initial point

for .
Proof: Let the RHS of (14) be denoted by , where

. Then, for any

In above reasoning, Lemmas 1 and 2 are used. Hence, is
Lipschitz continuous in , and there exists a unique contin-
uous solution for (6a) with any initial point for

.
The heretofore analyses pave a way to present the main result

in this section.
Theorem 4: The state vector of neural network (6) is stable in

the sense of Lyapunov and globally convergent to an equilibrium

point. The output of the neural network is globally convergent
to the unique optimum solution of problem (1).

Proof: By Lemma 3, with any initial point , (6a)
has a unique continuous solution trajectory for

. Consider the following Lyapunov function:

(15)

where , is an
equilibrium point of (14), and

where is defined in (12). Since is convex,
[24] and . Then, the time derivative of

along the trajectory of (14) is

Similar to [27, Th. 2.1], we can show that

which implies

Therefore, the state vector in (6a) is stable in the sense of Lya-
punov. Moreover, the above inequality indicates that

Since , is bounded, which follows that
is bounded. Hence, . The boundedness of also

indicates that there exists a convergent subsequence
such that

where is an equilibrium point of (6a). Finally, define a Lya-
punov function again

It is easy to see that decreases along the trajectory of (6a)
and satisfies . Therefore, for any , there exists

such that, for all

Therefore, . It follows that (6a) is globally
convergent to one of its equilibrium points. As a result, from
Theorem 2, the output trajectory globally converges to the
unique solution of problem (1).

Corollary 1: In problem (1), let denote the row
vectors of and , respectively .
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Fig. 2. Transient behavior of the states of neural network (6) started from a
random initial point with � � �� for solving the first problem in Example 1.

If the vectors for and for
are linearly independent, then the state vector of neural network
(6) is globally asymptotically stable in the sense of Lyapunov at
its unique equilibrium point.

Proof: The condition in the corollary actually implies the
uniqueness of Lagrangian multipliers and associated with
the solution . Then, the result follows from Theorem 4 imme-
diately.

IV. ILLUSTRATIVE EXAMPLES

In this section, we illustrate the performance of the proposed
neural network by solving two problems. The simulations are
conducted in MATLAB.

Example 1: Consider a 4-D QP problem (1) with

We use the proposed neural network (6) to solve the problem.
Simulation results show that the state vector of the neural
network is convergent to one of its equilibrium points from
any initial point and the output is always convergent to
the unique solution . For example, Fig. 2 il-
lustrates the transient states in one simulation where the
scaling factor is set to . The trajectories converge to

,
which corresponds to , very close
to the exact solution.

Note that for solving above problem the state equation of the
neural network has multiple (infinity number of) equilibrium
points. This is because the two rows in parameter are linearly
dependent. Now, we remove the second equality constraint and
solve the problem again. Simulations show that the state equa-
tion is then globally asymptotically stable at its unique equilib-
rium point , a phenomenon consistent with Corollary
1. Fig. 3 illustrates the state trajectories from

Fig. 3. State trajectories of neural network (6) started from eight corners of the
box ����� ��� with � � �� for solving the second problem in Example 1
(the second equality constraint is deleted from the first problem).

eight corners of the box , all of which converge to this
unique equilibrium point.

Example 2: The minimum distance problem (4) has an ap-
plication in designing recurrent neural network for solving vari-
ational inequalities (VIs) and related optimization problems. In
general, a nonlinear VI assumes the form

(16)

where is a closed convex set in and is a continuous
vector-valued function from to . The problem is to find

such that (16) holds. For the relationship between VIs,
complementarity problems and optimization problems, readers
are referred to [28] for an excellent survey. For solving VIs via
recurrent neural networks, recent studies suggest a very compet-
itive model, the projection neural network model [8], [9], [14],
[27]

(17)

where is a constant and is defined in (7). It
is seen that the above system includes system (14) as a special
case.

Aiming at easily realizing the activation function , is
always assumed to be a box or a sphere set (see Section II-A
for the discussion of the two cases), though most stability and
convergence results for system (17) are valid for general closed
and convex set , e.g., an defined in (5). The definition of the
activation function in (7) indicates that it can be determined by
solving a minimum distance problem in the form of (4). This ob-
servation motivates us to discretize the continuous-time system
(17) as

(18)

where is a constant step size, and to solve a minimum
distance problem at each step by using neural network (6).
Specifically, the minimum distance problem is in the form of
(4) with , and consequently, we need to
substitute in the neural network (6) with .
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Fig. 4. Transient behavior of the states of neural network (6) started from 20
random initial points with � � �� for computing the projection of ����� ��
onto � in Example 2.

In general, if (17) is proved to be globally convergent to the
solutions of the VI (16) with some choice of , then (18) is
globally convergent to the solutions of the VI with sufficiently
small . Then, we obtain a hierarchical neural network, in which
the high-level network computes solutions to the VI and the
low-level network computes the projection of a point onto the
feasible set. This hierarchical approach is of particular interest
if is pesudomonotone but not monotone in because other
candidates such as in [13] for solving constrained VIs cannot
deal with this type of the VI.

In this example, we use the discrete-time projection neural
network (18) together with neural network (6) to solve a VI in
(16) with

where is a cir-
cular plate on the plane. Note that is not mono-
tone, but pseudomonotone in ; moreover, its Jacobian matrix
is symmetric. According to [14, Th. 2], the continuous-time pro-
jection neural network (17) should be globally convergent to a
solution of the VI. Consequently, the discrete-time projection
neural network (18) should be globally convergent to a solution
provided that is sufficiently small. However, because of the in-
equality constraint in , neural network (18) cannot be applied
directly to solve the problem. To determine the projection of a
point onto (i.e., the lower part of the circular plate divided
by a dashed line in Fig. 5), neural network (6) is utilized. For
example, we determine the projection of a point (de-
noted by a small circle in Fig. 5) onto by using neural network
(6) with . Fig. 4 illustrates the trajectories of the state
trajectories started from 20 different initial points. It is seen that
all trajectories converge to zero. From the output equation, the
projection point is calculated as (denoted by an
asterisk in Fig. 5).

Fig. 5. State trajectories of neural network (18) started from four corners of the
box ��� 	
 with � � � in Example 2.

With the aid of neural network (6), the discrete-time projec-
tion neural network (18) is able to solve the VI. Fig. 5 shows the
state trajectories on the phase plane started from the corners of
the square . It is observed that all the trajectories globally
converge to , the unique solution of the problem.

V. A -WINNERS-TAKE-ALL NETWORK

In this section, the neural network (6) is tailored for solving
the -winners-take-all ( -WTA) problem

if largest elements of
otherwise

(19)

where stands for the input vector and stands
for the output vector. The -WTA operation accomplishes a
task of selecting largest inputs among inputs in a network.
It has been shown to be a computationally powerful operation
compared with standard neural network models with threshold
logic gates [29]. In addition, it has important applications in ma-
chine learning as well, such as -neighborhood classification
and -means clustering.

Many attempts have been made to design neural networks to
perform the -WTA operation (e.g., [29]–[34], and [36]). How-
ever, most of them require interconnections among am-
plifiers. In [35], a neural circuit with interconnections was
devised for doing this operation. However, the model is some-
what difficult to use because there are many parameters to be
chosen (the parameter-choosing procedure is decomposed into
five steps). Recently, the -WTA operation was formulated into
a QP problem and a simplified dual neural network was devel-
oped to solve the problem [15]. Assume that the difference be-
tween the th and th largest inputs is at least , where

, then the -WTA problem is equivalent to the following
QP problem [15, Th. 4]:

minimize

subject to (20)
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Fig. 6. Architecture of the �-WTA neural network (22).

where is a column vector with all entries being 1s. Then, a
-WTA neural network was tailored from (9) [15] as follows:
• state equation

(21a)

• output equation

(21b)

where , , ,
and . From [15], this network has amplifiers,
integrators, and interconnections.

Comparing (20) with (1), and following from the neural net-
work (6), we have a -WTA network described by the following:

• state equation

(22a)

• output equation

(22b)

where , is a scaling factor, and for
. The structure of the network is illustrated in Fig. 6.

It is clear from the figure that realization of the network requires
amplifiers and just one integrator. Moreover, it is observed that

there is no interconnection between any pair of amplifiers, and
consequently, the total number of interconnections is of order

.
In addition to having fewer integrators than network (21), by

comparing [15, Fig. 7] and Fig. 6 in this paper, the new model
(22) is much simpler in structure and thus more favorable for
circuit implementation.

The following stability results for (22) follow from Theorem
4 and Corollary 1 by noticing the special structure of problem
(20).

Corollary 2: The state vector of neural network (22) is glob-
ally asymptotically stable at its unique equilibrium point, and

Fig. 7. State trajectories of the �-WTA network (22) with � � �� , � � ���
started from 20 random initial points within ������ ���� in Example 3.

the output trajectory of the neural network is globally conver-
gent to the unique solution of problem (20).

Example 3: First, consider a -WTA problem with ,
, and ten inputs

randomly generated within the interval
. Fig. 7 depicts the state trajectories of the -WTA net-

work with the resolution parameter and scaling con-
stant , where each trajectory starts from a different ini-
tial state and converges to a value . Any value
in this interval corresponds to the unique output of the network

, which is the correct solution.
The following numerical results show the relationship be-

tween the difference sizes of the problem and the convergence
times of the network. Let and .
For each pair of and , 30 sets of inputs are randomly gen-
erated within the interval and the -WTA network with
the same initial state are simulated. The convergence time of the
network is defined as the time when the RHS of (22a) becomes
smaller than 0.001. For each pair of and , 30 convergence
times are obtained and averaged. Fig. 8 shows a curve of the av-
erage convergence time with respect to different values of . It is
interesting to see that the average convergence time decreases as
the problem size increases. This property can be deemed as an-
other merit of the proposed network, though a solid theoretical
analysis is still lacking at this stage. The similar phenomenon
was observed for another -WTA network based on the QP for-
mulation (20) in [36].

Example 4: In (19) let , , and the inputs
, , where ; i.e.,

. The parameter settings come
from [15]. In the equivalent QP problem (20), let the resolution
parameter . Simulation results show that the neural net-
work is always convergent to the solution , which
implies that and should be selected. Fig. 9 depicts the
state trajectory of the neural network with but different
values of from a random initial point within the first 0.001
time units. It is seen that greater implies faster convergence.
However, when decreases from 0.1 to 0.001, the trajectories
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Fig. 8. Average convergence time of the �-WTA network (22) with respect to
different problem sizes in Example 3, with� � �� , � � ����, and six different
initial points � .

Fig. 9. State trajectory of the �-WTA network (22) with � � �� and different
values of � but started from the same initial point � � � in Example 4, within
the first 0.001 time units.

are almost the same as that for . Now let range from
0 to 1 continuously, which leads to four sinusoidal input signals

for (see the top graph in Fig. 10). The other four
graphs in Fig. 10 record the outputs of the -WTA network at
each time instant . It is readily checked that the outputs are cor-
rect.

VI. CONCLUDING REMARKS

In this paper, an improved dual neural network is presented
for solving a class of QP problem. Compared with its prede-
cessor, the dual neural network, the new network is simpler in
structure, which is due to the special structure of such problems.
Specifically, if the bound constraint is presented, the neural
network can be regarded as a two-layer neural network. If the
bound constraint is absent, the neural network reduces to the
dual neural network. The global convergence of the neural

Fig. 10. Inputs and outputs of the �-WTA network (22) in Example 4.

network can be guaranteed by rather weak conditions. An inter-
esting application for the -WTA operation is discussed, which
results in a simple -WTA network. Numerical results are
shown to demonstrate the performance of the neural networks.
In particular, the simulation results in an example show that
the convergence time of the -WTA network decreases when
the problem size increases on average, which indicates that
its convergence rate with respect to the problem size deserves
further investigation.

REFERENCES

[1] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: A
model,” Science, vol. 233, no. 4764, pp. 625–633, Aug. 1986.

[2] D. W. Tank and J. J. Hopfield, “Simple neural optimization networks:
An A/D converter, signal decision circuit, and a linear programming
circuit,” IEEE Trans. Circuits Syst., vol. CAS-33, no. 5, pp. 533–541,
May 1986.

[3] M. P. Kennedy and L. O. Chua, “Neural networks for nonlinear
programming,” IEEE Trans. Circuits Syst., vol. CAS-35, no. 5, pp.
554–562, May 1988.

[4] J. Wang, “A deterministic annealing neural network for convex pro-
gramming,” Neural Netw., vol. 7, no. 4, pp. 629–641, 1994.

[5] M. Forti and A. Tesi, “New conditions for global stability of neural
networks with application to linear and quadratic programming prob-
lems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 42, no.
7, pp. 354–366, Jul. 1995.

[6] Y. Xia, “A new neural network for solving linear and quadratic pro-
gramming problems,” IEEE Trans. Neural Netw., vol. 7, no. 6, pp.
1544–1547, Nov. 1996.

[7] Y. Xia and J. Wang, “A dual neural network for kinematic control of
redundant robot manipulators,” IEEE Trans. Syst. Man Cybern. B, Cy-
bern., vol. 31, no. 1, pp. 147–154, Feb. 2001.

[8] X. Liang and J. Si, “Global exponential stability of neural networks
with globally Lipschitz continuous activations and its application to
linear variational inequality problem,” IEEE Trans. Neural Netw., vol.
12, no. 2, pp. 349–359, Mar. 2001.

[9] Y. Xia, H. Leung, and J. Wang, “A projection neural network and its
application to constrained optimization problems,” IEEE Trans. Cir-
cuits Syst. I, Fundam. Theory Appl., vol. 49, no. 4, pp. 447–458, Apr.
2002.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on December 8, 2008 at 09:27 from IEEE Xplore.  Restrictions apply.



HU AND WANG: AN IMPROVED DUAL NEURAL NETWORK FOR SOLVING A CLASS OF QUADRATIC PROGRAMMING PROBLEMS 2031

[10] Y. Zhang and J. Wang, “A dual neural network for convex quadratic
programming subject to linear equality and inequality constraints,”
Phys. Lett. A, vol. 298, pp. 271–278, 2002.

[11] M. Forti, P. Nistri, and M. Quincampoix, “Generalized neural network
for nonsmooth nonlinear programming problems,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1741–1754, Sep. 2004.

[12] X. Gao, “A novel neural network for nonlinear convex programming,”
IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 613–621, May 2004.

[13] Y. Xia, “An extended projection neural network for constrained opti-
mization,” Neural Comput., vol. 16, pp. 863–883, 2004.

[14] X. Hu and J. Wang, “Solving pseudomonotone variational inequalities
and pseudoconvex optimization problems using the projection neural
network,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1487–1499,
Nov. 2006.

[15] S. Liu and J. Wang, “A simplified dual neural network for quadratic
programming with its KWTA application,” IEEE Trans. Neural Netw.,
vol. 17, no. 6, pp. 1500–1510, Nov. 2006.

[16] Y. Yang and J. Cao, “Solving quadratic programming problems by de-
layed projection neural network,” IEEE Trans. Neural Netw., vol. 17,
no. 6, pp. 1630–1634, Nov. 2006.

[17] X. Hu and J. Wang, “Solving generally constrained generalized linear
variational inequalities using the general projection neural networks,”
IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1697–1708, Nov. 2007.

[18] X. Hu and J. Wang, “A recurrent neural network for solving a class
of general variational inequalities,” IEEE Trans. Syst. Man Cybern. B,
Cybern., vol. 37, no. 3, pp. 528–539, Jun. 2007.

[19] X. Hu and J. Wang, “Design of general projection neural networks
for solving monotone linear variational inequalities and linear and
quadratic optimization problems,” IEEE Trans. Syst. Man Cybern. B,
Cybern., vol. 37, no. 5, pp. 1414–1421, Oct. 2007.

[20] Q. Liu and J. Wang, “A one-layer recurrent neural network with a
discontinuous hard-limiting activation function for quadratic program-
ming,” IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 558–570, Apr.
2008.

[21] F. M. Ham and I. Kostanic, Principles of Neurocomputing for Science
and Engineering. New York: McGraw-Hill, 2001.

[22] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation:
A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp.
237–267, Feb. 2002.

[23] D. Kinderlehrer and G. Stampcchia, An Introduction to Variational In-
equalities and Their Applications. New York: Academic, 1980.

[24] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming: Theory and Algorithms. New York: Wiley, 1993.

[25] A. Auslender, Optimisation: Méthodes Numériques. Paris, France:
Masson, 1976.

[26] A. Nagurney and D. Zhang, Projected Dynamical Systems and Varia-
tional Inequalities With Applications. Boston, MA: Kluwer, 1996.

[27] Y. Xia, “Further results on global convergence and stability of globally
projected dynamical systems,” J. Optim. Theory Appl., vol. 122, no. 3,
pp. 627–649, 2004.

[28] P. T. Harker and J. S. Pang, “Finite-dimensional variational inequality
and nonlinear complementarity problems: A survey of theory, algo-
rithms and applications,” Math. Program., vol. 48, pp. 161–220, 1990.

[29] W. Maass, “On the computational power of winner-take-all,” Neural
Comput., vol. 12, pp. 2519–2535, 2000.

[30] E. Majani, R. Erlanson, and Y. Abu-Mostafa, “On the k-win-
ners-take-all network,” in Advances in Neural Information Processing
Systems, D. S. Touretzky, Ed. San Mateo, CA: Morgan-Kaufmann,
1989, vol. 1, pp. 634–642.

[31] G. L. Dempsey and E. S. McVey, “Circuit implementation of a peak
detector neural network,” IEEE Trans. Circuits Syst. II, Analog Digit.
Signal Process., vol. 40, no. 9, pp. 585–591, Sep. 1993.

[32] J. Wang, “Analogue winner-take-all neural networks for determining
maximum and minimum signals,” Int. J. Electron., vol. 77, no. 3, pp.
355–367, 1994.

[33] J. P. F. Sum, C. S. Leung, P. K. S. Tam, G. H. Young, W. K. Kan, and L.
W. Chan, “Analysis for a class of winner-take-all model,” IEEE Trans.
Neural Netw., vol. 10, no. 1, pp. 64–71, Jan. 1999.

[34] B. A. Calvert and C. Marinov, “Another k-winners-take-all analog
neural network,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp.
829–838, Jul. 2000.

[35] C. A. Marinov and J. J. Hopfield, “Stable computational dynamics for
a class of circuits with ���� interconnections capable of KWTA and
rank extractions,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no.
5, pp. 949–959, May 2005.

[36] Q. Liu and J. Wang, “Two k-winners-take-all networks with discontin-
uous activation functions,” Neural Netw., vol. 21, no. 2–3, pp. 406–413,
2008.

Xiaolin Hu received the B.E. and M.E. degrees in
automotive engineering from Wuhan University of
Technology, Wuhan, China, and the Ph.D. degree in
automation and computer-aided engineering from
The Chinese University of Hong Kong, Hong Kong,
China, in 2001, 2004, and 2007, respectively.

Currently, he is a Postdoctoral Fellow at Tsinghua
National Lab of Information Science and Tech-
nology, State Key Lab of Intelligent Technology
and Systems, and Department of Computer Science
and Technology, Tsinghua University, Beijing,

China. His current research interests are theories and applications of artificial
neural networks. His general interests also include evolutionary computation,
computational neuroscience, and multimedia processing.

Jun Wang (S’89–M’90–SM’93–F’07) received the
B.S. degree in electrical engineering and the M.S. de-
gree in systems engineering from Dalian University
of Technology, Dalian, China, and the Ph.D. degree
in systems engineering from Case Western Reserve
University, Cleveland, OH, in 1982, 1985, and 1991,
respectively.

Currently, is a Professor in the Department of
Mechanical and Automation Engineering, Chinese
University of Hong Kong, Hong Kong. He held
various academic positions at Dalian University of

Technology, Case Western Reserve University, and University of North Dakota.
He also held various short-term visiting positions at USAF Armstrong Labo-
ratory (1995), REKEN Brain Science Institute (2001), Universite catholique
de Louvain (2001), Chinese Academy of Sciences (2002), and Huazhong
University of Science and Technology (2006–2007). He has been holding
a Cheung Kong Chair Professorship in computer science and engineering
at Shanghai Jiao Tong University since 2008. His current research interests
include neural networks and their applications.

Dr. Wang has been an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS since 1999 and theIEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS—PART B: CYBERNETICS since 2003, and a member
of the Editorial Advisory Board of the International Journal of Neural System
since 2006. He also served as an Associate Editor of the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

(2002–2005), a guest editor of the special issues of European Journal of Op-
erational Research (1996), International Journal of Neural Systems (2007),
and Neurocomputing (2008). He was an organizer of several international
conferences such as the General Chair of the 13th International Conference on
Neural Information Processing (2006) and the 2008 IEEE World Congress on
Computational Intelligence held in Hong Kong. He served as the President of
Asia Pacific Neural Network Assembly in 2006.

Authorized licensed use limited to: Tsinghua University Library. Downloaded on December 8, 2008 at 09:27 from IEEE Xplore.  Restrictions apply.


