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A Recurrent Neural Network for Solving a
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Abstract—This paper presents a recurrent neural-network
model for solving a special class of general variational inequalities
(GVIs), which includes classical VIs as special cases. It is proved
that the proposed neural network (NN) for solving this class of
GVIs can be globally convergent, globally asymptotically stable,
and globally exponentially stable under different conditions. The
proposed NN can be viewed as a modified version of the gen-
eral projection NN existing in the literature. Several numerical
examples are provided to demonstrate the effectiveness and per-
formance of the proposed NN.

Index Terms—General projection neural network (GPNN), gen-
eral variational inequalities (GVIs), global asymptotic stability,
global exponential stability, recurrent neural network.

I. INTRODUCTION

DURING the past two decades, neural networks (NNs)
have found numerous applications such as classification,

pattern recognition, associate memory system, optimization,
and control. Specifically, recurrent NNs have served as efficient
alternatives for conventional iterative numerical methods in
dealing with many computational problems. For instance, there
have been many successful applications of recurrent NNs for
solving linear algebraic equations, matrix algebra problems,
linear and quadratic programming problems, etc. (see [1]–[4]
and references therein for example). Among them, an important
class of problems refers to the variational inequalities (VIs).

VI was introduced in the early 1960s, and it has enjoyed a
vigorous growth since then [5], [6]. It has many applications
such as the analysis of piecewise-linear resistive circuits, bima-
trix equilibrium points problem, economic equilibrium model-
ing, traffic network equilibrium modeling, structural analysis,
and so on. A survey of results and applications can be found
in [7]. In recent years, several recurrent NNs were proposed for
solving VIs. In [8], a recurrent NN was presented for solving
linear VIs. At almost the same time, another neural-network
model for solving linear VIs was invented in [9]. In [10]–[13],
a projection NN was developed for solving nonlinear VIs and
related optimization problems with box or sphere constraints.
More recently, two NNs capable of solving nonlinear VIs with
general constraints were proposed in [14]–[16], which represent
the state of the art in this area.
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To date, various extensions of VI have also been studied
extensively, one of which is the so-called general VI (GVI)
[17]. A general projection NN was presented in [18] for solving
GVIs and related problems with many desirable properties such
as global convergence, global asymptotic stability, and global
exponential stability. In this paper, a modified version of the
general projection NN will be presented for solving a special
class of GVIs. It will be seen that more convergence and stabil-
ity results can be obtained with many alternative conditions.

The remainder of this paper is organized as follows. The
problem formulation and the proposed neural-network model
are presented in the next section. Some preliminaries related to
the problem are also presented in this section. In Section III, we
extensively explore the capability of the proposed NN by study-
ing its convergence and stability under various conditions. In
Section IV, several special cases of GVIs and the corresponding
NNs are discussed briefly. Illustrative examples are presented in
Section V. Section VI gives the conclusions of this paper.

II. PRELIMINARIES

A. Problem Formulation and Neural-Network Model

Let F : Rn → Rn and G : Rn → Rn be continuous vector-
valued functions, and Ω be a closed convex set in Rn. Consider
the following GVI [17]. Find x∗ ∈ Rn such that G(x∗) ∈ Ω and

F (x∗)T (x−G(x∗)) ≥ 0, ∀x ∈ Ω. (1)

GVI includes many VIs as its special cases. For example, if
G(x) = x and F (x) is an affine mapping, (1) reduces to the
linear VI (LVI). Find x∗ ∈ Ω such that

(Mx∗ + p)T (x− x∗) ≥ 0, ∀x ∈ Ω (2)

where M ∈ Rn×n and p ∈ Rn. If G(x) = x and F (x) is not
necessarily affine, (1) reduces to the VI in the usual sense. Find
x∗ ∈ Ω such that

F (x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω. (3)

For another example, if both G(x) and F (x) are affine map-
pings, (1) becomes the generalized LVI (GLVI). Find x∗ ∈ Rn

such that Nx∗ + q ∈ Ω and

(Mx∗ + p)T (x−Nx∗ − q) ≥ 0, ∀x ∈ Ω (4)

where M , N ∈ Rn×n and p, q ∈ Rn. For solving (2) and (3),
several NNs have been developed in [8]–[12] (for numerical
algorithms one may refer to [6], [7] and references therein).
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Fig. 1. Architecture of the NN in (8).

For solving (4), an NN can be found in [19]. For solving
(1), a general projection NN (GPNN) with its dynamic system
governed by

dx

dt
= λ {−G(x) + PΩ (G(x)− F (x))} (5)

is proposed, where λ > 0 is a scaling factor, and PΩ : Rn → Ω
is a projection operator defined by

PΩ(x) = argmin
y∈Ω

‖x− y‖ (6)

where ‖ · ‖ denotes the l2-norm of Rn.
In this paper, we consider another special case of GVIs in (1)

by only requiring that G(x) is affine. Find x∗ ∈ Rn such that
Nx∗ + q ∈ Ω and

F (x∗)T (x−Nx∗ − q) ≥ 0, ∀x ∈ Ω. (7)

Clearly, this problem also includes LVI in (2), VI in (3), and
GLVI in (4) as special cases. A recurrent NN is proposed to
solve (7) with its dynamical equation governed by

dx

dt
= λW {−Nx+ PΩ (Nx+ q − F (x))− q} (8)

where W is an n× n real matrix. Clearly, when W = I , the
NN becomes a special case of the GPNN in (5). In this sense,
the proposed NN in (8) can be regarded as a modified version
of the GPNN for solving the GVI in (7).

In view of the fact that solving the GVI in (1) is equivalent to
finding zeros of the generalized projection equation [20]

PΩ (G(x)− F (x))−G(x) = 0

it is clear that the equilibria of the dynamic system (8) cor-
respond to the solutions of (7) exactly if W is nonsingular.
Moreover, this dynamic system can be easily realized by a re-
current NN with a one-layer structure as shown in Fig. 1, where
W = {wij}, N = {vij}, q = {qi}, and F (x) = {Fi(x)}. We
see from Fig. 1 that except for realizing the function F (x), a
circuit realizing of the NN consists of 4n simple summators, n
integrators, n units for computing the projection operator PΩ(·),
and some weighted connections. In order to easily realize
PΩ(x), it must have an explicit expression for any x ∈ Rn.
This is true in the following two cases. When Ω is a
box set, i.e., Ω = {x ∈ Rn|li ≤ xi ≤ ui,∀i = 1, . . . , n}, then
PΩ(x) = [PΩ(x1), . . . , PΩ(xn)]T and

PΩ(xi) =

{
li xi < li
xi li ≤ xi ≤ ui

ui xi > ui.

When Ω is a sphere set, i.e., Ω = {x ∈ Rn|‖x− c‖ ≤ r,
r > 0}, where c ∈ Rn and r ∈ R are two constants, then

PΩ(x) =
{
x, ‖x− c‖ ≤ r
c+ x−c

‖x−c‖ , ‖x− c‖ > r.

Note that the GVI in (7) as well as in (1) does not always have
a solution. For existence conditions for the solution of GVI,
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one may refer to [20]. Throughout this paper, we denoted the
solution set of (7) by Ω̄∗, and assume Ω̄∗ �= ∅ and there exists a
finite x∗ ∈ Ω̄∗.

B. Definitions and Lemmas

Throughout this paper, the following notations are used. If
A is a symmetric matrix, then µmin(A) and µmax(A) denote
the minimum and maximum eigenvalues of A, respectively, and
‖A‖ =

√
µmax(ATA). If x ∈ Rn, then ‖x‖ =

√∑n
i=1 x

2
i .

If f(x) is a scalar-valued function, then ∇f(x) ∈ Rn stands
for the gradient of f(x). If F (x) is a vector valued function
mapping from Rn to Rm, then ∇F (x) ∈ Rm×n stands for the
Jacobian matrix of F (x). Define the following set closely
related to the closed convex set Ω:

Ω̄ = {x|Nx+ q ∈ Ω}. (9)

Clearly, Ω̄ is also a convex set. Moreover, Ω̄∗ ⊂ Ω̄.
For the convenience of later discussion, it is necessary to

introduce several definitions and lemmata.
Definition 1: Let x(t) be a solution of a system ẋ = F (x).

The system is said to be globally convergent to a set Ω̂ if every
solution of the system satisfies

lim
t→∞dist

(
x(t), Ω̂

)
= 0

where dist(x(t), Ω̂) = infy∈Ω̂ ‖x− y‖.
Definition 2: A matrix function M : Rn → Rn×n is said to

be positive semidefinite on a set K if

hTM(x)h ≥ 0, ∀x ∈ K, h ∈ Rn.

M(x) is positive definite on K if the above inequality holds
wherever h �= 0; it is uniformly positive definite on K if there
exists a constant γ > 0 such that

hTM(x)h ≥ γ‖h‖2, ∀x ∈ K, h ∈ Rn.

Note that in the above definitions, we do not require that
M(x) is symmetric, which differs slightly from the corre-
sponding definitions in the usual sense. An alternative way to
understand the definitions is to interpret the positive semidef-
initeness, positive definiteness, and uniform positive definite-
ness of an asymmetric matrix M(x) as those of a symmetric
matrix M(x) +M(x)T in the usual sense.

Definition 3: A mapping F is said to be G-monotone on a
set K if ∀G(x), G(y) ∈ K

(F (x)− F (y))T (G(x)−G(y)) ≥ 0. (10)

Lemma 1: Assume that F is continuously differentiable on
an open convex set K and G(x) = Nx+ q where N ∈ Rn×n

and q ∈ Rn. Then, F is G-monotone on K if and only if
∇F (x)TN is positive semidefinite on K̄, where

K̄ = {x ∈ Rn|Nx+ q ∈ K}.

Proof: The G-monotonicity of F on K implies that for
any Nx+ q ∈ K and Ny + q ∈ K

(F (x)− F (y))T (Nx+ q −Ny − q) ≥ 0

or (
NTF (x)−NTF (y)

)T
(x− y) ≥ 0.

This is equivalent to say that the mapping F̃ (x) = NTF (x) is
monotone on K̄. Note that K̄ is also an open convex set. Then,
the lemma follows from [7, Proposition 2.3.2, pp. 155–156]. �

Lemma 2 ([5, pp. 9–10]): Let PΩ(·) be defined by (6). For
all u ∈ Rn and all v ∈ Ω ⊂ Rn, we have

(PΩ(u)− u)T (v − PΩ(u)) ≥ 0

and for all u, v ∈ Rn, we have

‖PΩ(u)− PΩ(v)‖ ≤ ‖u− v‖.

Lemma 3: Let a function φ : Rn → R be defined as

φ(x) = ‖Nx+ q − PΩ(Nx+ q)‖2

where N and q are parameters in (7). Then, φ(x) is continu-
ously differentiable and its gradient is given by

∇φ(x) = 2NT (Nx+ q − PΩ(Nx+ q)) . (11)

Proof: Define a function ν : Rn × Ω → R by

ν(x, y) � ‖Nx+ q − y‖2

which is clearly continuously differentiable. By the definition
of the projection operator PΩ, we have

φ(x) = min
y∈Ω

ν(x, y).

The minimum on the right-hand side is uniquely attained
at y = PΩ(Nx+ q). It follows from [21, Ch. 4, Th. 1.7]
(this theorem can be also found in [22, App.]) that φ(x) is
differentiable and

∇φ(x) = ∇xν(x, y)|y=PΩ(Nx+q).

This equation then gives (11). �
Lemma 4: Define a function V0 : Rn → R by

V0(x) = −F (x)T (H(x)−G(x))− 1
2
‖H(x)−G(x)‖2

(12)

where H(x) = PΩ(G(x)− F (x)). Then, V0(x) ≥ 0 for all
G(x) ∈ Ω and V0(x) = 0 if and only if x solves the GVI
in (1). Moreover, if F and G are continuously differentiable,
then V0 is also continuously differentiable, and its gradient is
given by

∇V0(x) = ∇G(x)TF (x) + (∇G(x)−∇F (x))T

× (H(x)−G(x)) . (13)
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Proof: Inspired by the work of Fukushima [23], we
rewrite the function V0 in the following equivalent form:

V0(x) =
1
2

{
‖F (x)‖2 − ‖H(x)− (G(x)− F (x))‖2

}
.

Consider the geometric meaning of the right-hand side. ‖F (x)‖
is the distance from G(x)− F (x) to G(x), and ‖H(x)−
(G(x)− F (x))‖ is the distance from G(x)− F (x) to its pro-
jection H(x) onto Ω. Hence, V0(x) ≥ 0 for all G(x) ∈ Ω.
Moreover, the definition of H(x) implies that V0(x) = 0 if and
only if G(x) = H(x), which is equivalent to say that x is a
solution of the GVI in (1) [20]. Define a function ν : Rn × Ω →
R as follows:

ν(x, y) = F (x)T (y −G(x)) +
1
2
‖y −G(x)‖2 .

Because F and G are both continuously differentiable, so
is ν(x, y). Consider the following constrained minimization
problem:

min
y∈Ω

ν(x, y).

It is equivalent to

min
y∈Ω

‖y −G(x) + F (x)‖2

the optimum of which is obviously uniquely determined as
y∗ = H(x). Therefore, we have

V0(x) = −min
y∈Ω

ν(x, y).

It follows from [21, Ch. 4, Th. 1.7] that V0(x) is differen-
tiable and

∇V0(x) = −∇xν(x, y)|y=H(x).

This equation then gives (13). �
Lemma 5: Assume that F (x) is locally Lipschitz continuous

in Rn and W in (8) is not equal to zero. For any x0 ∈ Rn,
there exists a unique solution x(t) for (8) with x(t0) = x0 over
[t0, T ), where T ≥ t0.

The proof of Lemma 5 parallels that of [18, Lemma 2],
and is thus omitted. In what follows, we assume that F (x) is
continuously differentiable so that F (x) is locally Lipschitz
continuous.

III. STABILITY ANALYSIS

The stability analysis of the proposed NN will be conducted
based on the Lyapunov theorem and LaSalle’s invariant set the-
orem [24]. The application of these theorems to recurrent NNs
has a profound background and may be traced back to the analy-
sis of nonlinear difference-differential equations in learning
theory or prediction theory [25]–[27], and then to the analysis
of Hopfield NNs [28]. Some recent applications can be found
in, to list a few, [12]–[16], [29]–[32], and references therein.

A. Nonsingular Matrix N

We first consider solving the GVI in (7) with a positive
definite matrix N by using the NN in (8) with W = I . Then, the
NN becomes exactly the GPNN in (8) proposed in [18], where
several stability results about the GPNN with general G(x) are
presented. Based on this special case of G(x), (i.e., an affine
function,) the following results can be obtained.

Theorem 1: Suppose that the function U(x) = Nx+ q −
F (x) is globally Lipschitz continuous with constant L, i.e.,

‖U(x)− U(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

If N is positive definite and µmin(NS) > L, where NS =
(N +NT )/2, then the NN in (8) with W = I is exponentially
stable at the unique solution of the GVI in (7).

Proof: Let x∗ be a finite solution of the GVI in (7). Define
the Lyapunov function

V (x(t)) =
1
2λ

‖x(t)− x∗‖2 , ∀t ≥ t0.

Compute the time derivative of V (x(t)) along the trajectory of
(8) with W = I

dV

dt
=(x− x∗)T [−Nx− q + PΩ (Nx+ q − F (x))]

= (x− x∗)T [−Nx+Nx∗ + PΩ (U(x))− PΩ (U(x∗))]

= − (x− x∗)TN(x− x∗) + (x− x∗)T

× [PΩ (U(x))− PΩ (U(x∗))]

≤− µmin(NS)‖x− x∗‖2 + ‖x− x∗‖ ‖U(x)− U(x∗)‖
≤ − β‖x− x∗‖2 = −2λβV (x(t)) , ∀t ≥ t0

where

β = µmin(NS)− L > 0.

In the above reasoning, Lemma 2 is used. It follows:

V (x(t)) ≤ V (x(t0)) exp (−2λβ(t− t0))

and

‖x(t)− x∗‖ ≤ ‖x(t)− x∗‖ exp (−λβ(t− t0)) , ∀t ≥ t0.

Hence, the NN is exponentially stable at x∗. �
In Theorem 1, the matrix N is required to be nonsingular. In

fact, if this is true, we can choose W = N−1 in (8) and obtain
more results for the NN. Define y = Nx+ q, and then (8) with
W = N−1 can be converted into

dy

dt
= λ

{−y + PΩ

(
y − F (N−1y −N−1q)

)}
(14)

which is a projection NN discussed extensively in the literature
(e.g., [11], [12], and [18]), and all stability results therein can
be applied to this NN. For example, some recent stability results
for the projection NN are combined into Theorem 2.
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Theorem 2: Suppose that N is nonsingular. Consider the
NN in (8) with W = N−1 and x(t0) ∈ Ω̄ for solving the
GVI in (7).

1) The NN is stable in the sense of Lyapunov and globally
converges to the solution set of GVI if ∇F (x)TN is
symmetric and Ω is bounded.

2) The NN is stable in the sense of Lyapunov and globally
converges to an exact solution of GVI if either of the
following conditions is satisfied.
a) ∇F (x)TN is symmetric and positive definite on Ω̄.
b) ∇F (x)TN is uniformly positive definite on Ω̄.

3) The NN is exponentially convergent to the unique so-
lution of GVI if either of the following conditions is
satisfied.
a) ∇F (x)TN is symmetric and positive definite on Ω̄.
b) ∇F (x)TN is uniformly positive definite on Ω̄.

Proof: Consider the equivalent form (14) of the NN in (8).
We have ∇F (N−1y −N−1q) = ∇F (x)N−1. Note that the
positive (semi)definiteness of ∇F (x)TN implies the positive
(semi)definiteness of ∇F (x)N−1, and that the uniform positive
definiteness of ∇F (x)TN implies the uniform positive defi-
niteness of ∇F (x)N−1. Then, part 1) follows from [11, Th. 1];
part 2) follows from [12, Th. 2.1] and [11, Th. 3]; and part 3)
follows from [12, Th. 2.2] and [18, Th. 4]. �

B. Singular Matrix N

When the matrix N ∈ Rn×n in (7) is singular, it is also
possible to solve the problem with the NN in (8) by choosing
appropriate W . Without loss of generality, we assume that
Rank(N) = m < n. According to the matrix theory, there al-
ways exist orthogonal matrices P and Q such that

N = PΛQT (15)

where Λ = diag(σ1, . . . , σm, 0, . . . , 0) and σ1, . . . , σm are the
singular values of N which are all positive. Choose

Ñ = PAQT (16)

where A = diag(σ1, . . . , σm, 1, . . . , 1), and consider the NN in
(8) with W = Ñ−1 = QA−1PT . Clearly, if m = n, Ñ = N . In
other words, the NN with W = Ñ−1 is a generalization of the
NN with W = N−1 discussed in Section III-A. We have the
following results.

Theorem 3: If ∇F (x)TN is positive semidefinite on Rn and
∇F (x)T Ñ is symmetric and positive definite on Rn, then the
NN in (8) with W = Ñ−1 is stable in the sense of Lyapunov
and globally convergent to a point in Ω̄∗. In particular, if (7)
has a unique solution x∗, the NN is globally asymptotically
stable at x∗.

Proof: Clearly Ñ−1 �= 0. By Lemma 5, there exists a
unique continuous solution x(t) for system (8) over [t0, T ). Let
U(x) � ÑTF (x) and x∗ be a finite point in Ω̄∗. Consider the
following function:

V (x) = V1(x) +
1
2λ

∥∥ΛQT (x− x∗)
∥∥2

where

V1(x) =
1
λ

1∫
0

(x− x∗)T [U (x∗ + t(x− x∗))− U(x∗)] dt

and Λ, Q are defined as same as in (15). Since ∇U(x) =
ÑT∇F (x) is symmetric and positive definite on Rn, V1(x)
is continuously differentiable and strictly convex on Rn and
∇V1(x) = λ−1(U(x)− U(x∗)) [6]. Then, x∗ corresponds to
the unique minimum of V1. The definition of V1 implies that
V1(x∗) = 0. As x∗ is finite, the function V1(x), and accordingly
V (x), is radially unbounded. Moreover, since x∗ ∈ Ω̄∗, by (7),
we have

F (x∗)T (PΩ (Nx+ q − F (x))−Nx∗ − q) ≥ 0.

In Lemma 2, let u = Nx+ q − F (x) and v = Nx∗ + q,
we have

[PΩ (Nx+ q − F (x))−Nx− q + F (x)]T

· [Nx∗ + q − PΩ (Nx+ q − F (x))] ≥ 0.

Summing the two resulting inequalities above yields

[F (x)− F (x∗) +Nx−Nx∗]T

· [PΩ (Nx+ q − F (x))−Nx− q]

≤ −(Nx−Nx∗)T (F (x)− F (x∗))

− ‖Nx+ q − PΩ (Nx+ q − F (x))‖2 .

By noticing that Ñ−1 = QA−1PT and Ã−1Λ2 = Λ, we can
deduce that for x ∈ Ω̄

dV (x)
dt

=∇V (x)T
dx(t)
dt

= [F (x)−F (x∗)]T [−Nx− q + PΩ(Nx+ q−F (x))]

+
[
ΛQT (x− x∗)

]T
ΛQT

· Ñ−1 [−Nx− q + PΩ (Nx+ q − F (x))]

= [F (x)−F (x∗)]T [−Nx− q + PΩ(Nx+ q−F (x))]

+
[
PA−1Λ2QT (x− x∗)

]T

· [−Nx− q + PΩ (Nx+ q − F (x))]

= [F (x)− F (x∗) +Nx−Nx∗]T

· [−Nx− q + PΩ (Nx+ q − F (x))]

≤ − (Nx−Nx∗)T (F (x)− F (x∗))

− ‖Nx+ q − PΩ (Nx+ q − F (x))‖2 .
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Since ∇F (x)TN is positive semidefinite on Rn, by Lemma 1,
F (x) is G-monotone on Rn with respect to G(x) = Nx+ q.
Then

dV (x)
dt

≤ −‖Nx+ q − PΩ (Nx+ q − F (x))‖2 ≤ 0.

Therefore, V (x) is a Lyapunov function and the NN in (8) is
stable in the Lyapunov sense. Clearly, dV (x)/dt = 0 if and
only if x ∈ Ω̄∗. Then

{x(t)|t0 ≤ t < T} ⊂ S =
{
x ∈ Ω̄|V (x) ≤ V (x(t0))

}
.

As V (x) is radially unbounded, S is bounded. On one hand,
this fact implies that T = +∞ and that the NN converges to
Ω̄∗ according to the LaSalle’s invariant set theorem [24]. On the
other hand, It implies that there exists a convergent subsequence
{x(tk)} such that

lim
k→∞

x(tk) = x̂

where x̂ ∈ Ω̄∗. Finally, define another Lyapunov function

V̂ (x) =
1
λ

1∫
0

(x− x̂)T [U (x̂+ t(x− x̂))− U(x̂)] dt

+
1
2λ

∥∥ΛQT (x− x̂)
∥∥2

.

It is easy to see that V̂ (x) decreases along the trajectory of (8)
and satisfies V̂ (x̂) = 0. Therefore, for any ε > 0, there exists
q > 0 such that, for all t ≥ tq

V̂ (x(t)) ≤ V̂ (x(tq)) < ε.

As V̂ (x) is strictly convex with its minimum V̂ (x̂) = 0, we
have limt→∞ x(t) = x̂. Therefore, the NN in (8) with W =
Ñ−1 is globally convergent to a solution of (7). In particular,
if (7) has a unique solution x∗, the NN is globally asymptoti-
cally stable at x∗. �

C. Block Diagonal Matrix N

Now, we consider solving the GVI in (7) with N ∈ Rn×n

being in the following form:

N =
(
NI 0
0 0

)
(17)

where NI ∈ Rm is nonsingular and m < n. The problem can
be solved by using the NN designed in Section III-B. Moreover,
because of the special structure of N , the matrix Ñ in (16) has

a quite simple form. By singular value decomposition, NI

can be factorized as NI = PIAIQ
T
I , where PI , QI are two

orthogonal matrices and AI is a diagonal matrix with its entries
being the singular values of NI that are all positive. Select

P =
(
PI 0
0 I

)
Q =

(
QI 0
0 I

)
Λ =

(
AI 0
0 0

)
.

It is verified that P and Q are the orthogonal matrices and that
N = PΛQT . Therefore

Ñ = P

(
AI 0
0 I

)
QT =

(
NI 0
0 I

)
.

If Ω is a box set, then it can be partitioned as Ω = ΩI × ΩII ,
where ΩI ⊂ Rm and ΩII ⊂ Rn−m are also two boxes, and the
NN in (8) with W = Ñ−1 can be partitioned as follows:

{ dxI

dt = λN−1
I {−NIxI + PΩI

(NIxI + qI − FI(x))− qI}
dxII

dt = λ {PΩII
(qII − FII(x))− qII}

where the meanings of the parameters with subscripts I and
II such as xI , xII are self-evident. The second part of the
NN indicates that qII must reside in ΩII ; otherwise, the NN
would have no equilibrium point, and correspondingly Ω̄∗ = ∅.
Hence, when we talk about this NN, this condition is always
assumed true.

Some conditions have been presented in Theorem 3 for
ascertaining the global convergence of the NN in (8) with
W = Ñ−1. In this section, we seek more results for this NN
based on the special structure of N defined in (17).

The following theorem claims that Ω̄ is actually an invariant
and asymptotically attractive set for the NN in (8) with W =
Ñ−1. The proof is in the spirit of [10, Th. 3.2] and makes use
of Lemma 3.

Theorem 4: Assume that Ω is a box set and that N is a block
diagonal matrix defined in (17). Then, the trajectory x(t) of the
NN in (8) with W = Ñ−1 will approach Ω̄ exponentially when
x(t0) �∈ Ω̄ and stay inside Ω̄ when x(t0) ∈ Ω̄ for all t ≥ t0.

Proof: Since Ñ−1 �= 0, by Lemma 5, there is a unique
solution x(t) of (8) over [t0, T ) for any initial point x(t0) ∈
Rn. When x(t0) �∈ Ω̄, i.e., Nx(t0) + q �∈ Ω, without loss of
generality, we assume that

Nx(t) + q �∈ Ω, ∀t ≥ t0.

Let a function φ(x(t)) be defined in Lemma 3. Then

dφ (x(t))
dt

=∇φ(x)T
dx(t)
dt

=2 [Nx+ q − PΩ(Nx+ q)]T N

· λÑ−1 [−Nx− q + PΩ (Nx+ q − F (x))]

= 2λ [NIxI + qI − PΩI
(NIxI + qI)]

T

· [PΩI
(NIxI + qI − FI(x))− PΩI

(NIxI + qI)]

− 2λ ‖NIxI + qI − PΩI
(NIxI + qI) ‖2.
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In Lemma 2, let u = NIxI + qI , v = PΩI
(NIxI + qI −

FI(x)), then

[NIxI + qI − PΩI
(NIxI + qI)]

T

· [PΩI
(NIxI + qI − FI(x))− PΩI

(NIxI + qI)] ≤ 0

which implies

dφ(t)/dt ≤ − 2λ ‖NIxI + qI − PΩI
(NIxI + qI) ‖2

= − 2λφ(t)

in view of the fact qII ∈ ΩII . Hence, ∀t ∈ [t0, T )

‖Nx(t) + q − PΩ (Nx(t) + q)‖
≤ ‖Nx(t0) + q − PΩ (Nx(t0) + q)‖ e−λ(t−t0).

Therefore, the trajectory of Nx(t) + q will approach Ω expo-
nentially, and accordingly the trajectory of x(t) will approach
Ω̄ exponentially. We now prove the second part of the the-
orem. Suppose when Nx(t0) + q ∈ Ω, there is t2 > t1 such
that Nx(t) + q ∈ Ω for t ∈ [t0, t1] and Nx(t) + q �∈ Ω for t ∈
(t1, t2], then φ(t1) = 0, φ(t2) > 0. We show this could not
happen by contradiction. By the mean value theorem, there
exists t̂ ∈ (t1, t2) such that

dφ(t̂)
dt

=
φ(t2)− φ(t1)

t2 − t1
> 0.

But, we have obtained above that dφ(t)/dt ≤ 0 for all t ≥ t0,
which is a contradiction. Thus, Nx(t) + q ∈ Ω over [t0, T )
if Nx(t0) + q ∈ Ω. In other words, x(t) ∈ Ω̄ over [t0, T ) if
x(t0) ∈ Ω̄. The proof is complete. �

To guarantee the global stability of the NN with W = Ñ−1,
Theorem 3 requires that ∇F (x)T Ñ is symmetric and positive
definite. In the case when N is a block diagonal matrix, we
will show that the symmetry of ∇F (x)T Ñ can be replaced by
some other conditions without affecting the stability properties
of the NN. In establishing the results, we will use the function
V0 defined in Lemma 4 to construct a Lyapunov function for the
stability analysis of the NN. Lemma 4 has revealed many de-
sired properties of this function. However, it would be more de-
sirable if the function is radially unbounded, i.e., V0(x) → ∞,
∀‖x‖ → ∞. Additionally, in many cases, this is true. For ex-
ample, let F (x) = 2x, G(x) = 0, where x ∈ R, then V0(x) =
2x2 − (PΩ(−2x) + 2x)2/2. If Ω = [−1,∞), then V0 → ∞,
∀|x| → ∞. But in some cases, it is not true. Moreover, it is
difficult to characterize this property for the function. What we
know at present is that this property depends not only on F
and G but also on Ω. Consider the same example above and
let Ω = [0,∞). It is easy to see that V0(x) = 0 when x ≥ 0.
Thus, V0 is not radially unbounded in this case. Further studies
in this regard are needed. Anyway, if this property of V0 holds,
we have the following results.

Theorem 5: Assume that Ω is a box and that N is a block
diagonal matrix defined in (17). If V0 defined in (12) is radi-
ally unbounded, ∇F (x)TN is positive semidefinite on Ω̄, and
∇F (x)T Ñ is positive definite on Ω̄, then the NN in (8) with
W = Ñ−1 and x(t0) ∈ Ω̄ is stable in the sense of Lyapunov

and globally convergent to Ω̄∗. In particular, if Ω̄∗ has a unique
point x∗, the NN is globally asymptotically stable at x∗.

Proof: By Theorem 4, Nx(t) + q ∈ Ω for t ≥ t0 as
x(t0) ∈ Ω̄. Consider the following function:

V (x) =
1
λ

[
V0(x) +

1
2
‖Nx−Nx∗‖2

]
, ∀Nx(t0) + q ∈ Ω

where V0(x) is defined by (12) with G(x) = Nx+ q and x∗ is
a finite point in Ω̄∗. According to Lemma 4, V (x) ≥ 0 for all x
satisfying Nx+ q ∈ Ω and V (x) = 0 if and only if x = x∗. In
Lemma 2, by letting u = NIxI + qI − FI(x) and v = NIx

∗
I +

qI , we have

(HI(x)−NIxI − qI + FI(x))
T (NIx

∗
I + qI −HI(x)) ≥ 0

where HI(x) = PΩI
(NIxI + qI − FI(x)), and

(HI(x)−NIxI − qI + FI(x))
T

· (NIx
∗
I −NIxI +NIxI + qI −HI(x)) ≥ 0

which follows

(FI(x) +NIxI −NIx
∗
I)

T (HI(x)−NIxI − qI)

+ ‖HI(x)−NIxI − qI‖2

≤ −FI(x)T (NIxI −NIx
∗
I)

= −F (x)T (Nx−Nx∗).

Let H(x) = PΩ(Nx+ q − F (x)). By using Lemma 4 and the
above inequality, we deduce

dV

dt
=

(
dV

dx

)T
dx

dt

=λ−1
[
NTF (x) + (N −∇F (x))T (H(x)−Nx− q)

+NT (Nx−Nx∗)
]T

(dx/dt)

= (F (x) +Nx−Nx∗)T NÑ−1 (H(x)−Nx− q)

+ (H(x)−Nx− q)T NÑ−1 (H(x)−Nx− q)

− (H(x)−Nx− q)T ∇F (x)Ñ−1 (H(x)−Nx− q)

= (FI(x) +NIxI −NIx
∗
I)

T (HI(x)−NIxI − qI)

+ ‖HI(x)−NIxI − qI‖2

− (H(x)−Nx− q)T ∇F (x)Ñ−1 (H(x)−Nx− q)

≤− F (x)T (Nx−Nx∗)

− (H(x)−Nx− q)T ∇F (x)Ñ−1 (H(x)−Nx− q) .

On one side, the positive semidefiniteness of ∇F (x)TN on
Ω̄ implies that F (x) is G-monotone on Ω, which means

(F (x)− F (x∗))T (Nx−Nx∗) ≥ 0, ∀x ∈ Ω̄.



HU AND WANG: RECURRENT NN FOR SOLVING A CLASS OF GENERAL VARIATIONAL INEQUALITIES 535

Together with (7), this inequality implies

F (x)T (Nx−Nx∗) ≥ 0, ∀x ∈ Ω̄.

On the other side, the positive definiteness of ∇F (x)T Ñ on Ω̄
implies the positive definiteness of ∇F (x)Ñ−1 on Ω̄. Thus

(H(x)−Nx− q)T ∇F (x)Ñ−1 (H(x)−Nx− q) ≥ 0

for all x ∈ Ω̄ and the equality holds if and only if H(x)−
Nx− q = 0, or dx/dt = 0. Therefore, V (x) is a Lyapunov
function and the NN in (8) is stable in the Lyapunov sense. As
V0(x) is radially unbounded, so is V (x), and the following set:

S =
{
x ∈ Ω̄|V (x) ≤ V (x(t0))

}
is bounded. According to the LaSalle’s invariant set theorem
[24], the NN will converge to the largest invariant set in S, that
is, Ω̄∗. In particular, if (7) has a unique solution x∗, the NN is
globally asymptotically stable at x∗. �

Remark 1: In Section III-C, the GVI with N being in the
form of (17) is considered only. We remark that if there are
multiple blocks in the diagonal of N , i.e.,

N =




NI

0
NII

. . .
0


 (18)

where NI , NII , . . . are nonsingular, the NN in (8) with W =
Ñ−1 can also be used to solve the problem, where Ñ is chosen
as follows: 1) let Ñ = N and 2) change all zeros in the diagonal
to ones except those in the NI , NII , . . . blocks. Then, all the
stability results discussed in Section III-C are still valid for
the NN.

IV. SPECIAL CASES

Consider the following generalized nonlinear complemen-
tarity problem (GNCP). Find x∗ ∈ Rn such that

Nx∗ + q ≥ 0 F (x∗) ≥ 0 (Nx∗ + q)TF (x∗) = 0 (19)

where N ∈ Rn×n, and F (x) is a differentiable vector-valued
function from Rn into Rn. If N = I and q = 0, the above
GNCP reduces to an NCP in the usual sense, which has been
studied extensively (see, e.g., [6], [7], and references therein).
We show that the GNCP defined in (19) is equivalent to the GVI
in (7) with Ω = Rn

+, i.e., the nonnegative quadrant of Rn. On
one hand, if x∗ is a solution to the GNCP, then

F (x∗)T (x−Nx∗ − q) =F (x∗)Tx− F (x∗)T (Nx∗ + q)

=F (x∗)Tx ≥ 0, ∀x ∈ Rn
+.

On the other hand, assume x∗ is a solution to the GVI in
(7). Then, Nx∗ + q ≥ 0. Substituting x = 0 into (7) gives
F (x∗)T (Nx∗ + q) ≤ 0. Let x = 2(Nx∗ + q), then x ≥ 0.
Substituting x into (7) gives F (x∗)T (Nx∗ + q) ≥ 0. Thus,
F (x∗)T (Nx∗ + q) = 0. In turn, this yields F (x∗)Tx ≥ 0 for

all x ∈ Rn
+; thus F (x∗) ≥ 0. Therefore, x∗ is also a solution to

the GNCP.
Because of the equivalence between GVI and GNCP, the

proposed NN in (8) can be used to solve GNCP in (19) as
well. Specifically, the NN for this purpose can be described
as follows:

dx

dt
= λW

{−Nx+ (Nx+ q − F (x))+ − q
}

(20)

where (x)+ = [(x1)+, . . . , (xn)+] and (xi)+ = max(xi, 0).
In the following, we consider the linear case of GVI and

GNCP. If F (x) is an affine mapping in (7), i.e., F (x) =
Mx+ p, where M ∈ Rn×n and q ∈ Rn. Then, (7) becomes
exactly (4), which represents the GLVI studied in [33]. To solve
the problem, the NN in (8) is tailored to

dx

dt
= λW {−Nx+ PΩ(Dx+ r)− q} (21)

where D = N −M and r = q − p. Similarly, if F (x) =
Mx+ p in (19), then the GNCP becomes the generalized
linear complementarity problem (GLCP), and the NN in (20)
is tailored to

dx

dt
= λW

{−Nx+ (Dx+ r)+ − q
}

(22)

where D = N −M and r = q − p.
All the stability results for the NN in (8) presented in

Theorems 1–5 can be applied to the NNs in (20)–(22). For
the latter two NNs, one point should be noted is that because
∇F (x)TN and ∇F (x)T Ñ become MTN and MT Ñ , the
conditions in these theorems requiring that the two matrices are
positive definite or positive semidefinite on Ω̄ are equivalent to
requiring that they are positive definite or positive semidefinite
on the whole space. Another point should be noted is that the
NN in (21) has been studied in [18] and [19] with different
choices of W . Compared with the results therein, it is seen
that Theorems 1–5 provide many alternative conditions for
ascertaining the global convergence of this particular NN.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness and perfor-
mance of the proposed NN by using several examples.

Example 1: Consider a GVI in (4) with

N =
(
5 1
2 3

)
F (x) = Nx+

(
sin2 x2 − 3
cos(x1 + x2)

)

q =(−4− 2)T Ω = {x ∈ R2|1 ≤ xi ≤ 5, i = 1, 2}.

It is easy to check that U(x) = Nx+ q − F (x) is globally
Lipschitz continuous with the Lipschitz constant L = 2. Be-
cause µmin(NS) = 2.2 > L, in view of Theorem 1, the NN in
(8) with W = I , or the GPNN in (5) can be used to solve the
problem. The trajectories of the NN with λ = 1 started from 20
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Fig. 2. Transient behavior of the GPNN in (5) with 20 random initial points
in Example 1.

initial points are presented in Fig. 2, which shows that all tra-
jectories converge to the unique solution x∗ = (0.923, 0.385)T

exponentially.
Example 2: Consider a GVI in (7) with

F (x) =


x2 + x3 − exp(−x1 − x2 − x3)

x1 + x3 − exp(−x1 − x2 − x3)
x1 + x2 − exp(−x1 − x2 − x3)




N =


−1 2 2

2 −1 2
2 2 −1


 q =


 2

−3
5




and Ω = {x ∈ R3|l ≤ x ≤ u}, l = (−5,−5,−5)T , u =
(0, 10, 5)T . It can be verified that the ∇F (x) +N is not
positive semidefinite in R3. As a result, the GPNN in (5)
proposed in [18] cannot be ensured for its convergence and
stability. In fact, simulations showed that the trajectory of this
NN with any initial point always diverges to infinity (e.g.,
see Fig. 3). Now, we check the following conditions: N is
nonsingular, Ω is bounded, and

∇F (x)TN

=


 3e−x1−x2−x3+4 3e−x1−x2−x3+1 3e−x1−x2−x3+1

3e−x1−x2−x3+1 3e−x1−x2−x3+4 3e−x1−x2−x3+1
3e−x1−x2−x3+1 3e−x1−x2−x3+1 3e−x1−x2−x3+4




is symmetric. Thus, the NN in (8) with W = N−1 can be
adopted to solve the problem. Simulation results showed that
the trajectory of the NN started from any initial point converges
to the unique solution x∗ = (0.765,−0.716, 0.098)T , which is
consisted with Theorem 2. Fig. 4 displays the transient behavior
of the NN with 20 random initial points in R3 when λ = 1.

Example 3: Consider a GVI in (7) with

F (x) =
(−3(x1 + 1)2 + 10

2(x2 − 3)

)
N =

(−1 0
0 2

)

q =(1− 2)T Ω =
{
x ∈ R2|∥∥x− (1, 1)T

∥∥ ≤ 1
}
.

Fig. 3. Transient behavior of the GPNN in (5) with a random initial point in
Example 2.

Fig. 4. Transient behavior of the NN in (8) with W = N−1 and 20 random
initial points in Example 2.

This example is used to show the effectiveness of the NN with
Ω being a sphere instead of a box, and also to show some other
results stated in Theorem 2. The Jacobian matrix of F (x) is

∇F (x) =
(−6(x1 + 1) 0

0 2

)
.

Clearly, ∇F (x) +N is symmetric but not positive semidefinite
in Rn and the GPNN in (5) cannot be applied to solve the
problem. However, it is trivial to show that the matrix

∇F (x)TN =
(
6(x1 + 1) 0

0 4

)

is symmetric and positive semidefinite for all x satisfying Nx+
q ∈ Ω. According to Theorem 2, the NN in (8) with W = N−1

will be globally convergent to the solution set of the problem.



HU AND WANG: RECURRENT NN FOR SOLVING A CLASS OF GENERAL VARIATIONAL INEQUALITIES 537

Fig. 5. Transient behavior of the NN in (8) with W = N−1 and 40 random
initial points in Example 3 when q = (1,−2)T . The dashed circle stands for
the boundary of Ω.

The simulation results showed that the NN is globally asymp-
totically stable at the unique solution x∗ = (0.645, 1.882)T .
Fig. 5 displays the convergence of the NN with 40 random
initial points in state space.

We next let q = (2,−2)T . Then, ∇F (x)TN becomes pos-
itive definite for all x satisfying Nx+ q ∈ Ω. According to
Theorem 2, the NN in (8) should be globally exponentially
stable. In Fig. 6, trajectories of the NN started from 30 random
initial points are plotted, all of which converge exponentially to
the solution x∗ = (0.853, 1.995)T .

Example 4: Consider a GLVI in (4) with

M =


−1 2 0

0 3 −3
−1 0 1




N =


−3.5188 5.9858 −0.2662

0.2317 9.4938 −9.1973
−2.5387 0.3569 3.4999




p =(1,−3,−5)T q = (−5, 0,−6)T

and Ω = {x ∈ R4| − 5 ≤ xi ≤ 5, i = 1, 2, 3}. Note that
Rank(N) = 2. By singular value decomposition, N can
be decomposed as N = PΛQT , where Λ = diag(14.1695,
6.4113, 0), P and Q are two orthogonal matrices. Let A =
diag(14.1695, 6.4113, 1) and then

Ñ = PAQT =


−3.1169 6.2339 0

0 9.3508 −9.3508
−3.1169 0 3.1169


 .

It is verified that MTN is positive semidefinite and MT Ñ is
symmetric and positive definite. According to Theorem 3, the
problem can be solved by using the NN in (8) with W = Ñ−1.

Fig. 6. Transient behavior of the NN in (8) with W = N−1 and 30 random
initial point in Example 3 when q = (2,−2)T .

Fig. 7. Transient behavior of the NN in (8) with W = Ñ−1 and 20 random
initial points in Example 4.

All simulations showed that the NN is globally convergent
to the unique solution of the GLVI, x∗ = (−1.267,−0.100,
−3.000, 2.500)T . Fig. 7 illustrates the trajectories of the NN
with 20 random initial points when λ = 1. Simulation results
also showed that if GPNN in (5) is used to solve the problem,
the states always diverge.

Example 5: Consider a GLCP in (19) where F (x) = Mx+
p by using the NN in (22). Let

M =




5 −3 0 0 2
1 5 0 0 2
3 0 2 −2 0
0 0 0 3 4
−5 −1 0 0 −6


 p =




2
1
−2
2
4




N =




4 −3 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 −1


 q =




1
1
3
−5
0


 .
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Fig. 8. Transient behavior of the NN in (22) with W = Ñ−1 and ten random
initial points in Example 5.

The problem has a unique solution x∗ = (−0.700,−0.600,
7.050, 5.000, 1.350)T . Note that N is in the form of (18).
According to Remark 5, the NN with W = Ñ−1 can be used
to solve the problem, where Ñ is as same as N except that the
entry at the third row and third column is one instead of zero.
It is verified that MTN is positive semidefinite and MT Ñ is
positive definite, i.e., two main conditions in Theorem 5 are
satisfied. We use the NN to solve the problem. All simulations
showed that the NN is globally convergent to x∗. Fig. 8 displays
the state trajectories of the NN with ten random initial points
when λ = 1.

VI. CONCLUDING REMARKS

This paper presents a recurrent NN for solving a class of
GVIs, which can be viewed as a modified version of the GPNN
existing in the literature. Under mild conditions, it is shown
that the proposed NN is globally convergent, globally asymp-
totically stable, and globally exponentially stable. Compared
with the GPNN, the NN enlarges the scope of the GVIs that
can be solved by recurrent NNs, while preserving the simple
structure and low complexity for model implementation. This
NN can be utilized to solve several special cases of this class
of GVIs, GLVI, GLCP, and GNCP. The simulation results show
the desirable performance of the proposed NN and substantiate
the theoretical results.
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